Ôn tập cuối năm môn Hình học

NC

Cho hình thang ABCD có \(\widehat{A}\) = \(\widehat{B}\) = 900, AB = BC = \(\dfrac{AD}{2}\) , pt CD: 3x + y - 4 = 0 A(-2; 0). Tìm toạ độ B (yB > 0)

MY
31 tháng 5 2022 lúc 11:33

\(AB=BC=\dfrac{AD}{2}=a\Rightarrow AD=2a\)

\(C\in CD:3x+4y-4=0\Rightarrow C\left(b;4-3b\right)\)

\(xét\Delta ABC\) \(vuông\) \(tạiB\Rightarrow AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)

\(\Delta ABC\) \(vuông\) \(cân\) \(tạiB\Rightarrow\) \(goscBAC=45^o\)

\(\Rightarrow góc\) \(DAC=45^o\) 

\(xét\Delta ADC\) \(có:DC=\sqrt{AC^2+AD^2-2AC.AD.cos\left(45^o\right)}\)

\(=\sqrt{2a^2+4a^2-2.a^2\sqrt{2}.2.cos\left(45\right)}=a\sqrt{2}\)

\(\Rightarrow DC=AC\Rightarrow\Delta ADC\) \(cân\) \(tạiC\Rightarrow góc\left(DAC\right)=góc\left(ADC\right)=45^o\Rightarrow góc\left(ACD\right)=90^o\)

\(\overrightarrow{CA}=\left(-2-b;3b-4\right)\Rightarrow\overrightarrow{n_{ca}=}\left(4-3b;-2-b\right)\)

\(CD:3x+y-4=0\Rightarrow\overrightarrow{n}=\left(3;1\right)\)

\(\Rightarrow cos\left(90\right)=0=3\left(4-3b\right)-2-b=0\Leftrightarrow b=1\)

\(\Rightarrow C\left(1;1\right)\)

\(đặt:B\left(x;y\right)\left(y>0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BA}.\overrightarrow{BC}=\overrightarrow{0}\\AB=BC\end{matrix}\right.\) \(hệ\) \(pt\) \(ẩn\) \(x;y\Rightarrow B=\left(......\right)\)

 

Bình luận (0)

Các câu hỏi tương tự
VN
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
RC
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
SK
Xem chi tiết