Ôn tập cuối năm môn Hình học

ND

Bài1: tính các gọc của tam giác ABC biết \(\widehat{A}\): \(\widehat{B}\): \(\widehat{C}\) = 2:3:4
Bài 2: Cho tam giác ABC vuông tại A, có \(\widehat{B}\) = 60\(^0\) và AB= 5cm. Tia phân giác của góc B cắt AC tại D> Kẻ DE vuông góc với BC tại E

a) CMR: △ABD = △EBD

b) CMR: △ABE là tam giác đều

c) Tính độ dài cạnh BC

Bài 3: Cho tam giác ABC có M là trung điểm của cạnh BC và AM= \(\frac{1}{2}\)BC, số đo góc C là 15\(^0\). Tính số đo góc B

Giúp mình với ạ

NT
18 tháng 2 2020 lúc 13:09

Bài 1:

a) Ta có: \(\widehat{A}:\widehat{B}:\widehat{C}=2:3:4\)

\(\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{4}\)

Xét ΔABC có

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(định lí tổng ba góc trong một tam giác)

Ta có: \(\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{4}\)\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được

\(\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{4}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{2+3+4}=\frac{180^0}{9}=20^0\)

Do đó, ta được

\(\left\{{}\begin{matrix}\frac{\widehat{A}}{2}=20^0\\\frac{\widehat{B}}{3}=20^0\\\frac{\widehat{C}}{4}=20^0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{A}=20^0\cdot2=40^0\\\widehat{B}=20^0\cdot3=60^0\\\widehat{C}=20^0\cdot4=80^0\end{matrix}\right.\)

Vậy: \(\widehat{A}=40^0\); \(\widehat{B}=60^0\); \(\widehat{C}=80^0\)

Bài 2:

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD là cạnh chung

\(\widehat{ABD}=\widehat{EBD}\)(do BD là tia phân giác của \(\widehat{EBA}\))

Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)

b) Ta có: ΔABD=ΔEBD(cmt)

⇒AB=EB(hai cạnh tương ứng)

Xét ΔAEB có AB=EB(cmt)

nên ΔAEB cân tại B(định nghĩa tam giác cân)

Xét ΔAEB cân tại B có \(\widehat{EBA}=60^0\)(gt)

nên ΔAEB đều(dấu hiệu nhận biết tam giác đều)

c) Ta có: ΔABC vuông tại A(gt)

\(\widehat{C}=30^0\)

nên \(AB=\frac{BC}{2}\)(trong một tam giác vuông, cạnh đối diện với góc 300 thì bằng nửa cạnh huyền)

hay BC=2AB=2*5=10cm

Vậy: BC=10cm

Bài 3:

Xét ΔABC có

AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)

\(AM=\frac{BC}{2}\)(gt)

Do đó: ΔABC vuông tại A(định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)

\(\Rightarrow\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{B}=90^0-\widehat{C}=90^0-15^0=75^0\)

Vậy: \(\widehat{B}=75^0\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
ND
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết