Xét hai tam giác AOD và tam giác COB có
góc AOD=góc BOC(đối đỉnh)
góc DAO= góc BCO(so le trong)
suy ra tam giác AOD đồng dạng với tam giác COB (g.g)
do đó OD/OB=OA/OC suy ra OD=OB.OA/OCtương đương OD=4.2/6=1,3(cm)
Vậy OD = 1,3 cm
Xét hai tam giác AOD và tam giác COB có
góc AOD=góc BOC(đối đỉnh)
góc DAO= góc BCO(so le trong)
suy ra tam giác AOD đồng dạng với tam giác COB (g.g)
do đó OD/OB=OA/OC suy ra OD=OB.OA/OCtương đương OD=4.2/6=1,3(cm)
Vậy OD = 1,3 cm
Cho hình than ABCD, hai cạnh đáy AB, CD. Hai đường chéo cắt nhau tại O. Biết rằng OA=2cm, OC=6cm, OB=4cm. Tính OD.
Cho hình thang ABCD (AB// CD) gọi O là giao điểm 2 đường chéo AC và BD . Biết AB =5cm , OA=2cm , OC=4cm, OD=3.6cm.
Chứng minh rằng:
a) OA*OB=OB*OC
b) Tính DC, OB ?
c) Dường thẳng O vuông góc với AB , CD lần luotj tại H,K. Chứng minh rằng :\(\dfrac{OH}{OK}\)=\(\dfrac{AB}{CD}\)
Cho hình thang ABCD (AB // CD) có hai đường chéo cắt nhau ở O và tam giác ABO là tam giác đều. Gọi E, F, G theo thứ tự là trung điểm của các đoạn thăng OA, OD và BC. Chứng minh rằng tam giá EFG là tam giác đều ?
Cho hình thang ABCD (AB//CD). Gọi F là giao điểm của hai đường chéo AC và BD.
a, CM: ΔFAB đồng dạng với ΔFCD
b, CM: FA.FD=FB.FC
c, Đường thẳng qua F vuông góc với AB tại M và cắt CD tại N, biết FB=3cm; FD= 6cm; FM= 2cm; CD= 8cm. Hãy tính diện tích ΔFCD
Cho hình thang ABCD (AB song song với CD) AC cắt BD tại O.Biết OA=1/3 OC , AB=4.Tính CD
Cho hình thang ABCD có AB song song CD (AB<CD) và M là trung điểm của AD. Qua M vẽ đường thẳng song song với 2 đáy của hình thang cắt cạnh bên BC tại N và cắt 2 đường chéo BD và AC lần lượt tại E, F.
a) CM: N, E, F lần lượt là trung điểm của BC, BD, AC
b) Gọi I là trung điểm của AB. Đường thẳng vuông góc với IE tại E và đường thẳng vuông góc với IF tại F cắt nhau ở K. CM: KC=KD
Chủ đề: Học toán lớp 7
Cho hình thang ABCD (AB//CD). Gọi O là giao điểm của hai đường chéo AC và BD. Qua O kẻ đường thẳng song song với AB, cắt AD và BC theo thứ tự ở E và G.
a) Chứng minh : OA .OD = OB.OC.
b) Cho AB = 5cm, CD = 10 cm và OC = 6cm. Hãy tính OA, OE.
Cho hình thang ABCD AB song song CD Gọi O là giao điểm của hai đường chéo AC và BD biết AB = 3 cm oa = 2cm OB = 4cm OB = 3,6 cm Chứng minh rằng OA.OD = OB.OC tính DC ,OB đường thẳng qua ô vuông góc với AB và CD lần lượt tại H và k Chứng minh rằng OH/OK=AB/CD
Cho hình thang ABCD (AB//CD). Gọi I là giao điểm của hai đường chéo AC và BD. Vẽ qua I một đường thẳng song song với AB cắt AD và BC lần lượt tại E và F. CMR:
a. IE=IF
b. \(\dfrac{2}{EF}\)=\(\dfrac{1}{AB}\)+\(\dfrac{1}{CD}\)