Tam giác đồng dạng

JJ

 Cho hình thang ABCD (AB // CD); hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. Chứng minh OM = ON

TT
6 tháng 2 2021 lúc 13:35

Ta có: MN // AB (gt); AB // CD(gt) => MN // AB // CD

Xét tam giác ABC có: OM // AB (MN // AB)

 =>  \(\dfrac{OM}{AB}=\dfrac{CM}{CA}\) (hệ quả định lý Ta lét trong tam giác) (1)

Xét tam giác ABD có: ON // AB (MN // AB)

=>   \(\dfrac{ON}{AB}=\dfrac{DN}{DB}\) (hệ quả định lý Ta lét trong tam giác) (2)

Xét hình thang ABCD có: MN // AB // CD (cmt)

 => \(\dfrac{CM}{CA}=\dfrac{DN}{DB}\) (định lý Ta lét trong hình thang) (3)

Từ (1) (2) (3) => OM = ON

Bình luận (1)
NT
6 tháng 2 2021 lúc 13:52

undefined

Bình luận (1)
TM
6 tháng 2 2021 lúc 13:38

Trong ∆DAB có: \(\dfrac{MO}{AB}=\dfrac{DO}{DB}\)  ( hệ quả Ta lét)    (1)

Trong ∆CAB có: \(\dfrac{NO}{AB}=\dfrac{CO}{AC}\)  ( hệ quả Ta lét)     (2)

Trong ∆OAB có: \(\dfrac{CO}{CA}=\dfrac{DO}{DB}\)  ( hệ quả Ta lét)     (3)

từ (1),  (2), (3) => \(\dfrac{MO}{AB}=\dfrac{NO}{AB}\) =>\(MO=NO\)

 

 

Bình luận (1)

Các câu hỏi tương tự
CN
Xem chi tiết
KH
Xem chi tiết
KH
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
LV
Xem chi tiết