Tam giác đồng dạng

LV

Cho hình thang ABCD (AB//CD). Gọi giao điểm 2 đường chéo AC và BD là O. Biết OA=4cm; OC=8cm; AB=5cm.

a) Tính CD.

b) Qua O kẻ đường thẳng vuông góc với AB cắt AB và CD lần lượt tại H, K. Tính diện tích của tam giác AOB? ( Biết OK=6cm)

c) Qua O kẻ đường thẳng song song với AB cắt AD, BC lần lượt tại E, F

Chứng minh rằng \(\frac{AE}{AD}\)+\(\frac{CF}{BC}\)=1 và OE=OF.

*Đây là đề giữa HK2 kiến thức cơ bản :>

NB
6 tháng 4 2020 lúc 17:09

a) Do AB//AB// cạnh CDCD của ΔODCΔODC theo định lý Talet ta có:

ABCD=OAOC=OBODABCD=OAOC=OBOD

⇒CD=AB.OCOA=5.84=10⇒CD=AB.OCOA=5.84=10cm

b) Do AH//AH// cạnh KCKC của ΔOKCΔOKC nên theo định lý Ta-lét ta có:

AHKC=OAOC=OHOKAHKC=OAOC=OHOK

⇒OH=OA.OKOC=4.68=3⇒OH=OA.OKOC=4.68=3cm

⇒SΔOAB=12OH.AB=123.5=7,5cm2⇒SΔOAB=12OH.AB=123.5=7,5cm2

c.1) Trong ΔADCΔADCEO//DCEO//DC theo địnhlý Ta-lét ta có:

EODC=AEAD=AOACEODC=AEAD=AOAC (1)

Trong ΔABCΔABC có: OF//ABOF//AB nên theo định lý Ta-lét ta có:

OFAB=COCA=CFCBOFAB=COCA=CFCB

⇒AEAD+CFCB=AOAC+COCA=ACAC=1⇒AEAD+CFCB=AOAC+COCA=ACAC=1 (đpcm)

c.2) Trong ΔBCDΔBCDOF//DCOF//DC theo ta-lét ta có:

OFDC=OBBDOFDC=OBBD (2)

Do AB//CDAB//CD theo Ta-let ta có:

OAOC=OBODOAOC=OBOD

Theo tính chất dãy tỉ số bằng nhau:

OAOC+OA=OBOD+OBOAOC+OA=OBOD+OB hay OAAC=OBBDOAAC=OBBD (3)

Từ (1), (2) và (3) suy ra EODC=OFDCEODC=OFDC

⇒EO=OF⇒EO=OF (đpcm)

Bình luận (1)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
JJ
Xem chi tiết
KH
Xem chi tiết
KH
Xem chi tiết
ND
Xem chi tiết
PH
Xem chi tiết
NP
Xem chi tiết
VH
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết