Xét hình thang ABCD có MN//AB//CD
nên AM/AD=BN/BC(1)
Xét ΔADC có OM//DC
nên OM/DC=AM/AD(2)
Xét ΔBDC có ON//DC
nên ON/DC=BN/BC(3)
Từ (1), (2) và (3) suy ra OM=ON
hay O là trung điểm của MN
Xét hình thang ABCD có MN//AB//CD
nên AM/AD=BN/BC(1)
Xét ΔADC có OM//DC
nên OM/DC=AM/AD(2)
Xét ΔBDC có ON//DC
nên ON/DC=BN/BC(3)
Từ (1), (2) và (3) suy ra OM=ON
hay O là trung điểm của MN
Cho hình thang ABCD có AB song song CD (AB<CD) và M là trung điểm của AD. Qua M vẽ đường thẳng song song với 2 đáy của hình thang cắt cạnh bên BC tại N và cắt 2 đường chéo BD và AC lần lượt tại E, F.
a) CM: N, E, F lần lượt là trung điểm của BC, BD, AC
b) Gọi I là trung điểm của AB. Đường thẳng vuông góc với IE tại E và đường thẳng vuông góc với IF tại F cắt nhau ở K. CM: KC=KD
Chủ đề: Học toán lớp 7
Bài 1:Cho hình thang ABCD(ABsong song vớiCD).Đường thẳng song song với đáy AB cắt các cạnh bên và các đường chéo AD,BD,AC,BC theo thứ tự các điểm M,N,P,Q.Chứng minh rằng MN=PQ.
Bài 2:Hình thang cân ABCD(AB song song với CD)có hai đường chéo AC và BD cắt nhau tại O. Gọi M ,N theo thứ tự là trung điểm BD và AC. Cho biết MN=3MO ,đáy lớn CD=5,6 cm.
a. Tính độ dài đoạn thẳng MN và đáy nhỏ AB.
b. So sánh độ dài đoạn thẳng MN với nửa hiệu của CD và AB.
Cho hình thang ABCD (AB//CD). Gọi I là giao điểm của hai đường chéo AC và BD. Vẽ qua I một đường thẳng song song với AB cắt AD và BC lần lượt tại E và F. CMR:
a. IE=IF
b. \(\dfrac{2}{EF}\)=\(\dfrac{1}{AB}\)+\(\dfrac{1}{CD}\)
Cho hình thang ABCD có đáy AB<CD và O là giao điểm hai đường chéo . Từ trung điểm M của AB kẻ đường thảng MO cắt CD tại N
a) CM: N là trung điểm của CD
b) Kéo dài CD và BC cắt nhau tại I . Cm: I,M,N,O thẳng hàng
c) Qua O kẻ đường thẳng d song song với AB và CD ,cắt AD và BC lần lượt tại B và F
CM: O là trung điểm của EF
Cho hình thang ABCD(AB//CD) và O là giao điểm của 2 đường chéo
a Cm OaxoD=OBxOC
b gọi I,K thứ tự là trung điểm của AB và CD chứng minh O,I,K thẳng hàng
c Giả sử BD2=AB.CD chứng minh rằng tam giác ABD và tam giác CBD đồng dạng
d Một đường thẳng d song song với hai đáy của hình thang cắt cạnh AD,BC,đường chéo AC và BD thứ tự tại các điểm M,Q,P,N TÌm vị trí của d để MN=NP=NQ
Mong mọi người giúp em ạ!
Cho hình thang ABCD(AB//CD) và O là giao điểm của 2 đường chéo
a Cm OaxoD=OBxOC
b gọi I,K thứ tự là trung điểm của AB và CD chứng minh O,I,K thẳng hàng
c Giả sử BD2=AB.CD chứng minh rằng tam giác ABD và tam giác CBD đồng dạng
d Một đường thẳng d song song với hai đáy của hình thang cắt cạnh AD,BC,đường chéo AC và BD thứ tự tại các điểm M,Q,P,N TÌm vị trí của d để MN=NP=NQ
Mong mọi người giúp em ạ!
Cho hình thang ABCD(AB//CD) và O là giao điểm của 2 đường chéo
a Cm OaxoD=OBxOC
b gọi I,K thứ tự là trung điểm của AB và CD chứng minh O,I,K thẳng hàng
c Giả sử BD2=AB.CD chứng minh rằng tam giác ABD và tam giác CBD đồng dạng
d Một đường thẳng d song song với hai đáy của hình thang cắt cạnh AD,BC,đường chéo AC và BD thứ tự tại các điểm M,Q,P,N TÌm vị trí của d để MN=NP=NQ
Mong mọi người giúp em ạ!
Cho hình vuông ABCD, I là một điểm di động trên cạnh CD. Gọi O là giao điểm AC và BD. Qua I vẽ đường thẳng song song với AC, cắt BD và AD lần lượt ở E và M. Qua I kẻ đường thẳng vuông góc với AC tại K và Cắt BC tại N.
a) Tứ giác EOKI là hình gì ?
b) Chứng minh rằng M , O , N thẳng hàng.
c) Chứng minh rằng I di động trên cạnh CD thì chu vi của EOKI không đổi .
Cho hình vuông ABCD, I là một điểm di động trên cạnh CD. Gọi O là giao điểm AC và BD. Qua I vẽ đường thẳng song song với AC, cắt BD và AD lần lượt ở E và M. Qua I kẻ đường thẳng vuông góc với AC tại K và Cắt BC tại N.
a) Tứ giác EOKI là hình gì ?
b) Chứng minh rằng M , O , N thẳng hàng.
c) Chứng minh rằng I di động trên cạnh CD thì chu vi của EOKI không đổi .