Bài 3: Khái niệm về thể tích của khối đa diện

OC

cho hình hộp ABCD.A'B'C'D' có đáy là hình chữ nhật với AB=\(\sqrt{3}\),AD=\(\sqrt{7}\).hai mặt bên (ABB'A') và (ADD'A') lần lượt tạo với đáy nhưng góc 45 và 60 độ. tính thể tích khối hộp biết cạnh bên bằng 1

 

NV
18 tháng 12 2016 lúc 16:49

Gọi H là hình chiếu vuông góc của A' trên mặt phẳng (ABCD)

Kẻ HN vuông góc với AB tại N, HM vuông góc với AD tại M

Ta cần tìm chiều cao h=A'H của hình hộp

Dễ dàng chứng minh \(\widehat{A'NH}=60^0\)\(\widehat{A'MH}=45^0\)

Xét tam giác vuông NHA' và MHB' có

\(NH=\frac{HA'}{tan\widehat{HNA'}}=\frac{h}{\sqrt{3}}\)\(MH=\frac{HA'}{tan\widehat{HMA'}}=h\)

Xét hình vuông AMHN có \(AH=\sqrt{HN^2+HM^2}=\frac{2h}{\sqrt{3}}\)

Xét tam giác vuông AHA' có \(AH^2+A'H^2=A'A^2\Leftrightarrow h^2+\frac{4}{3}h^2=1\Leftrightarrow h=\sqrt{\frac{3}{7}}\)

Vậy thể tích hình hộp là: \(V=h.\sqrt{3}.\sqrt{7}=\sqrt{\frac{3}{7}}.\sqrt{3}\sqrt{7}=3\)

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
PT
Xem chi tiết
CH
Xem chi tiết
LK
Xem chi tiết
NL
Xem chi tiết
BC
Xem chi tiết
BJ
Xem chi tiết
SK
Xem chi tiết
BB
Xem chi tiết