Bài 3: Khái niệm về thể tích của khối đa diện

LK

Cho hình chóp tứ giác đều S.ABCD có độ dài cạnh đáy bằng a, cạnh bên bằng \(\frac{a\sqrt{5}}{2}\). Tính góc tạo bởi mặt bên và mặt đáy, tính thể tích khối cầu ngoại tiếp hình chóp S.ABCD ?

TN
18 tháng 4 2016 lúc 16:45

S D A H B M C I N

Gọi H là tâm của ABCD\(\Rightarrow SH\perp\left(ABCD\right)\)

      M là trung điểm của BC \(\Rightarrow BC\perp\left(SHM\right)\)

Do các mặt bên tạo với đáy cùng 1 góc => \(\widehat{SHM}\) bằng góc tạo bởi 2 mặt bên với đáy

Tính được \(SH=\frac{a\sqrt{3}}{2}'HM=\frac{a}{2}\)

\(\tan\widehat{SMH}=\frac{SH}{MH}=\sqrt{3}\Rightarrow\widehat{SMN}=60^0\)

Lập luận được tâm khối cầu là điểm I của SH với trung trực SC trong (SHC)

Tính được bán kính khối cầu do tam giác SNI đồng dạng với tam giác SHC

\(\Rightarrow SI=\frac{SN.SC}{SH}=\frac{5a}{4\sqrt{3}}\)

Vậy \(V=\frac{4}{3}\pi R^2=\frac{125a^3\sqrt{3}\pi}{432}\)

Bình luận (0)

Các câu hỏi tương tự
CH
Xem chi tiết
BC
Xem chi tiết
HH
Xem chi tiết
LH
Xem chi tiết
NL
Xem chi tiết
PT
Xem chi tiết
TD
Xem chi tiết
NL
Xem chi tiết
BJ
Xem chi tiết