Violympic toán 8

TH

Cho hình chữ Nhật ABCD. Trên các cạnh AB,BC,CD,DA lần lượt lấy các điểm E,F,G,H sao cho AE/AB=AH/AD=CF/CB=CG/CD.

a)chứng minh EFGH là hình bình hành

b)chứng minh hình bình hành EFGH có chu vi ko đổi

TK
21 tháng 3 2020 lúc 14:06

Từ các hệ Thức trên ta dễ dàng có HE//BD//FG(1)

Suy ra \(\frac{AE}{AB}=\frac{AH}{AD}=\frac{CF}{CB}=\frac{CG}{CD}=\frac{HE}{BD}=\frac{FG}{BD}=k\Rightarrow HE=FG\)(2)

Từ (1) và (2) có ĐPCM

b/Ta cx dễ dàng chứng minh đc \(\frac{EG}{AC}=\frac{HF}{AC}=\)\(\frac{EB}{AB}=\frac{AB}{AB}-\frac{AE}{AB}=1-k\)

Ta thấy HE,FG tỉ lệ thuận BD =k

EG,HF tỉ lệ thuận AC =1-k

Mà AC,BD cố định suy ra Các cạnh của HBH cố định, suy ra Chu vi cx cố định

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TH
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
TA
Xem chi tiết
TA
Xem chi tiết
TA
Xem chi tiết
DA
Xem chi tiết
DL
Xem chi tiết