Bài 2: Tỉ số lượng giác của góc nhọn

TB

Cho hình chữ nhật ABCD có AB=m.AD (m>0), điểm E thuộc cạnh BC, đường thẳng AE cắt DC tại F. C/m: \(\frac{^{m^2}}{AB^2}=\frac{m^2}{AE^2}+\frac{1}{AF^2}\)

H24
10 tháng 7 2017 lúc 10:22

A B C D F E

Vì AB//CF( ABCD là HCN) \(\Rightarrow\dfrac{AB}{AE}=\dfrac{CF}{EF}\)( theo định lý thales)

\(\Rightarrow\dfrac{AB^2}{AE^2}=\dfrac{CF^2}{EF^2}\)

có: AD//CE nên \(\dfrac{AD}{AF}=\dfrac{CE}{EF}\)(hệ quả định lý thales)\(\Rightarrow\dfrac{AD^2}{AF^2}=\dfrac{CE^2}{EF^2}\)

do đó \(\dfrac{AB^2}{AE^2}+\dfrac{AD^2}{AF^2}=\dfrac{CE^2+CF^2}{EF^2}=1\)

mà AB=m.AD.---> thay vào ta có:

\(\dfrac{m^2.AD^2}{AE^2}+\dfrac{AD^2}{AF^2}=1\Leftrightarrow\dfrac{m^2}{AE^2}+\dfrac{1}{AF^2}=\dfrac{1}{AD^2}\)

Nhân thêm với m2. \(\dfrac{1}{AD^2}=\dfrac{m^2}{\left(AD.M\right)^2}=\dfrac{m^2}{AB^2}\)

Ta có đpcm

P/s: có hứng mới làm thôi nhá :v

Bình luận (0)

Các câu hỏi tương tự
CP
Xem chi tiết
NQ
Xem chi tiết
AI
Xem chi tiết
NT
Xem chi tiết
HM
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
PL
Xem chi tiết