Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bài 3: Đường thẳng vuông góc với mặt phẳng

QA

Cho hình chóp S.ABCD, đáy ABCD là hình vuông; SA\(\perp\)(ABCD).

a, Chứng minh các \(\Delta SBC,SDC\) là các \(\Delta\) vuông.

b, Từ A kẻ AH\(\perp\)SB, AK\(\perp\)SC, AI\(\perp\)SD. Chứng minh 3 đường thẳng AH, AK, AI đồng phẳng.

c, Chứng minh HI\(\perp\)AK

d, Biết \(AB=a,SA=a\sqrt{2}\). Tính \(S_{AHKI}\) theo a

NT
14 tháng 1 2024 lúc 21:55

a: BC\(\perp\)BA(ABCD là hình vuông)

BC\(\perp\)SA(SA\(\perp\)(ABCD))

BA,SA cùng thuộc mp(SAB)

Do đó: BC\(\perp\)(SAB)

=>BC\(\perp\)SB

=>ΔSBC vuông tại B

Ta có: CD\(\perp\)AD(ABCD là hình vuông)

CD\(\perp\)SA(SA\(\perp\)(ABCD))

SA,AD cùng thuộc mp(SAD)

Do đó: CD\(\perp\)(SAD)

=>CD\(\perp\)SD

=>ΔSDC vuông tại D

b: Ta có: AH\(\perp\)SB

AH\(\perp\)BC(BC\(\perp\)(SAB))

SB,BC cùng thuộc mp(SBC)

Do đó: AH\(\perp\)(SBC)

=>AH\(\perp\)SC

CD\(\perp\)(SAD)

AI\(\subset\)(SAD)

Do đó: CD\(\perp\)AI

mà AI\(\perp\)SD

và SD,CD cùng thuộc mp(CSD)

nên AI\(\perp\)(SCD)

=>AI\(\perp\)SC

Ta có: AI\(\perp\)SC

AK\(\perp\)SC

AH\(\perp\)SC

=>AI,AK,AH đồng phẳng

c: Xét ΔSAB vuông tại A và ΔSAD vuông tại A có

SA chung

AB=AD

Do đó: ΔSAB=ΔSAD

=>\(\widehat{BSA}=\widehat{DSA}\); SB=SD

Xét ΔSHA vuông tại H và ΔSIA vuông tại I có

SA chung

\(\widehat{HSA}=\widehat{ISA}\)

Do đó: ΔSHA=ΔSIA

=>SH=SI

Xét ΔSBD có \(\dfrac{SH}{SB}=\dfrac{SI}{SD}\)

nên HI//BD

BD\(\perp\)AC(ABCD là hình vuông)

BD\(\perp\)SA(SA\(\perp\)(ABCD))

AC,SA cùng thuộc mp(SAC)

Do đó:BD\(\perp\)(SAC)

mà HI//BD

nên HI\(\perp\)(SAC)

mà AK\(\subset\)(SAC)

nên HI\(\perp\)AK

Bình luận (0)

Các câu hỏi tương tự
LD
Xem chi tiết
NC
Xem chi tiết
H24
Xem chi tiết
MA
Xem chi tiết
AH
Xem chi tiết
AH
Xem chi tiết
QA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết