Bài 3: Đường thẳng vuông góc với mặt phẳng

VL

Cho hình chóp SABCD, có đáy là hình vuông tâm O. SA ⊥ (ABCD). Gọi H,I,K lần lượt là hình chiếu vuông góc của A trên SB, SC, SD.

a) Cm: BC⊥(SAB), CD⊥(SAD), BD⊥(SAC)

b) Cm: AH⊥(SBC), AK⊥(SCD)

c) Cm: HK⊥(SAC). Từ đó suy ra HK⊥AI

NL
4 tháng 3 2021 lúc 21:36

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AC\\BD\perp AC\left(\text{hai đường chéo hình vuông}\right)\end{matrix}\right.\)  \(\Rightarrow BD\perp\left(SAC\right)\)

\(BC\perp\left(SAB\right)\Rightarrow BC\perp AH\) ; mà \(AH\perp SB\Rightarrow AH\perp\left(SBC\right)\)

\(\left\{{}\begin{matrix}CD\perp\left(SAD\right)\Rightarrow CD\perp AK\\AK\perp SD\end{matrix}\right.\) \(\Rightarrow AK\perp\left(SCD\right)\)

\(\left\{{}\begin{matrix}AH\perp\left(SBC\right)\Rightarrow AH\perp SC\\AK\perp\left(SCD\right)\Rightarrow AK\perp SC\end{matrix}\right.\) \(\Rightarrow SC\perp\left(AHK\right)\Rightarrow SC\perp HK\)

Mặt khác theo tính đối xứng hình vuông \(\Rightarrow HK||BD\Rightarrow HK\perp AC\Rightarrow HK\perp\left(SAC\right)\)

\(AI\in\left(SAC\right)\Rightarrow HK\perp AI\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
AH
Xem chi tiết
PP
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
VK
Xem chi tiết
SH
Xem chi tiết