Bài 6: Ôn tập chương Đường thẳng và mặt phẳng trong không gian. Quan hệ song song.

JP

Cho hình chóp S.ABCD, có đáy là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA, SD. a) Chứng minh MN // (ABCD). b) Chứng minh SB // (OMN). c) Chứng minh (OMN) // (SBC). d) Gọi P, Q lần lượt là trung điểm của AB, ON. Chứng minh PQ // (SBC).

NT
11 tháng 12 2023 lúc 5:13

a: Xét ΔSAD có

M,N lần lượt là trung điểm của SA,SD

=>MN là đường trung bình của ΔSAD

=>MN//AD

Ta có: MN//AD

AD\(\subset\)(ABCD)

MN không nằm trong mp(ABCD)

Do đó: MN//(ABCD)

b: Xét ΔDSB có

O,N lần lượt là trung điểm của DB,DS

=>ON là đường trung bình của ΔDSB

=>ON//SB và \(ON=\dfrac{SB}{2}\)

Ta có: ON//SB

ON\(\subset\)(OMN)

SB không thuộc mp(OMN)

Do đó: SB//(OMN)

c: Xét ΔASC có

O,M lần lượt là trung điểm của AC,AS

=>OM là đường trung bình của ΔASC

=>OM//SC

Ta có: OM//SC

OM\(\subset\)(OMN)

SC không nằm trong mp(OMN)

Do đó: SC//(OMN)

Ta có: SB//(OMN)

SC//(OMN)

SB,SC cùng thuộc mp(SBC)

Do đó: (SBC)//(OMN)

Bình luận (0)

Các câu hỏi tương tự
NP
Xem chi tiết
KV
Xem chi tiết
JP
Xem chi tiết
QV
Xem chi tiết
JP
Xem chi tiết
ND
Xem chi tiết
NN
Xem chi tiết
PK
Xem chi tiết
SK
Xem chi tiết