Cho tứ diện ABCD. Qua điểm M nằm trên AC ta dựng một mặt phẳng \(\left(\alpha\right)\) song song với AB và CD. Mặt phẳng này lần lượt cắt các cạnh BC, BD và AD tại N, P, Q
a) Tứ giác MNPQ là hình gì ?
b) Gọi O là giao điểm hai đường chéo của tứ giác MNPQ. Tìm tập hợp các điểm O khi M di động trên đoạn AC ?
Cho hình chóp S.ABCD đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của AB, CD.
a) Chứng minh MN // (SBC); MN // (SAD).
b) Gọi I là trung điểm SA. Tìm giao điểm K của (INM) và SD.
c) Chứng minh: SB, SC // (IMN).
d) Gọi H là trung điểm IO. Chứng minh HK // (SBC).
Cho hình chóp A.ABCD có đáy ABCD là một tứ giác lồi. Gọi là giao điểm của hai đường chéo AC và BD. Xác định thiết diện của hình chóp cắt bởi mặt phẳng \(\left(\alpha\right)\) đi qua O, song song với AB và SC. Thiết diện đó là hình gì ?
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Gọi G là trọng tâm của tam giác SAB và I là trung điểm của AB. Lấy điểm M trong đạn AD sao cho AD = 3 AM
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC)
b) Đường thẳng qua M và song song với AB cắt CI tại N. Chứng minh rằng NG // (SCD)
c) Chứng minh rằng MG // (SCD)
Cho hình chóp SABCD, có đáy ABCD là hình bình hành tâm O.
a) Tìm giao tuyến của hai mặt phẳng SAC và SBD ?
b) Gọi M là trung điểm của SD. Chứng minh: SB / /MAC?
c) Gọi I là trung điểm của AB. Tìm giao điểm của đường thẳng MI và mặt phẳng SAC ?
d) Thiết diện của hình chóp cắt bởi mặt phẳng P đi qua điểm M và song song với SBC?
Bài 2 :Cho hình chóp S.ABCD. Tứ giác ABCD là hình bình hành Gọi M, N, P lần lượt là trung điểm AB, CD và SA. a. CMR MN song song với các mp (SBC) và (SAD) b.Xác định giao tuyến của (SBD) với mp(MNP) c.CMR SC song song với (MNP) d.Gọi G,G, lần lượt là trọng tâm các tam giác ABC và tam giác anh CMR GG, // với (SAD)
Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Mặt phẳng (P) đi qua BC và song song AD cắt SA tại E, cắt SD tại F.
a) Tứ giác BEFC là hình gì?
b) M thuộc AD sao cho AM=1/3AD. G là trọng tâm \(\Delta SAB\), I là trung điểm AB. Đường thẳng qua M và song song AB cắt CI tại N. CMR: NG//(SCD) và MG//(SCD)
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi G là trọng tâm tam giác SAC. Mặt phẳng (a) qua G cắt SA; SB; SC; SD lần lượt tại A'B'C'D'.
1) Tính \(\dfrac{SA}{SA'}+\dfrac{SC}{SC'}-\left(\dfrac{SB}{SB'}-\dfrac{SD}{SD'}\right)\)
2 ) Tính \(\dfrac{SA}{SA'}+\dfrac{SB}{SB'}+\dfrac{SC}{SC'}+\dfrac{SD}{SD'}\)