Bài 1: Đại cương về đường thẳng và mặt phẳng

MA

Cho hình bình hành ABCD nằm trong mặt phẳng (a) và điểm S không thuộc (a). Gọi M, P lần lượt là trung điểm của SA, BC. N là điểm trên cạnh SB sao cho BN=1/4BS. Xác định giao tuyến của mp (MNP) với các mp: a, (ABCD) b, (SAD) c, (SCD)

NL
1 tháng 7 2021 lúc 16:13

a.

Trong mp (SAB), nối MN kéo dài cắt AB tại E

\(\Rightarrow\left\{{}\begin{matrix}E\in\left(MNP\right)\\E\in\left(ABCD\right)\end{matrix}\right.\)

Mặt khác theo giả thiết \(\left\{{}\begin{matrix}P\in\left(ABCD\right)\\P\in\left(MNP\right)\end{matrix}\right.\)

\(\Rightarrow EP=\left(MNP\right)\cap\left(ABCD\right)\)

b.

Theo giả thiết: \(\left\{{}\begin{matrix}M\in\left(MNP\right)\\M\in SA\Rightarrow M\in\left(SAD\right)\end{matrix}\right.\)

Trong mp (ABCD), nối EP kéo dài cắt AD tại F

\(\Rightarrow\left\{{}\begin{matrix}F\in\left(MNP\right)\\F\in\left(SAD\right)\end{matrix}\right.\)

\(\Rightarrow MF=\left(MNP\right)\cap\left(ABCD\right)\)

c.

Trong mp (SBC), nối NP kéo dài cắt SC tại H

\(\Rightarrow\left\{{}\begin{matrix}H\in\left(MNP\right)\\H\in\left(SCD\right)\end{matrix}\right.\)

Gọi giao điểm của EP và CD tại K

\(\Rightarrow HK=\left(MNP\right)\cap\left(SCD\right)\)

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
PD
Xem chi tiết
MA
Xem chi tiết
NL
Xem chi tiết
BB
Xem chi tiết
SK
Xem chi tiết
BN
Xem chi tiết
PT
Xem chi tiết
BT
Xem chi tiết