Cho tam giác ABC có Â = 90°, AB = 3cm và AC = 4 cm . Đường cao AH (H thuộc BC) a, chứng minh tam giác ABC đồng dạng tam giác HAC b, chứng minh AC² = BC.HC c,Tia phân giác góc A cắt BC tại D. Tính độ dài các đoạn thẳng BC , DB
cho hình chữ nhật ABCD. AB=30cm, AD=40cm. Trên AD lấy điểm F sao cho BF=BC, đường trung trực của CF cates DC tại E. EF cắt AB tại P a) Chứng minh tam giác PAF đồng dạng tam giác FAB b) Tính độ dài PB c) Chứng minh góc CPB = góc DBC d) Chứng minh PC_|_BD
Cho hình vuông ABCD. Trên cạnh BC lấy điểm I, tia AI cắt đườngthẳng CD tại E, tia DI cắt đường thẳng AB tại F. Chứng minh:
a) BF.CE = AD^2 b) ∆FBC∼∆BCE c) BE vuông góc CF
Cho hình vuông ABCD. Trên cạnh BC lấy điểm E, tia AE cắt đường thẳng CD tại M, tia DE cắt đường thẳng AB tại N. Chứng minh:
a) ΔNBC ~ ΔBCM
b) BM ⊥ CN
Cho ∆ABC vuông tại A có phân giác của góc ABC cắt AC tại D. Từ D vẽ đường thẳng song song BC cắt AB tại M. a) Giả sử AB = 6cm, AD = 3cm, CD = 5cm. Tính BC. Tính tỉ số diện tích của ∆AMD với ∆ABC b) Vẽ DE BC tại E. Chứng minh: ∆AMD ∽ ∆EDC. Từ đó suy ra: c) Từ C vẽ đường thẳng vuông góc với BD cắt BD tại I. Chứng minh: BC^2 = BD.BI + CD.CA
Cho tam giác ABC, 1 đường thẳng song song với cạnh BC và cắt AB tại D và AC tại E. Trên tia đối của tia CA lấy điểm F sao cho CF=BD .Gọi M là giao điểm của DF và BC.
a. Chứng minh: \(\frac{MD}{MF}=\frac{AC}{AB}\)
b. Cho BC=8cm, BD=5cm và DE = 3cm. Chứng minh rằng ΔABC cân
Cho ∆MBC vuông tại M (MB < MC), có đường cao MD.
a) Chứng minh: ∆BDM ∽ ∆BMC
b) Chứng minh: CM2 = CD.CB
c) Cho MB = 6cm, MC = 8cm. Tính BC và MD
d) Trên tia đối của tia DM lấy điểm A (DA > DM). Vẽ đường cao CF của ∆ABC, CF cắt AD tại H.
Chứng minh: ∆HDC ∽ ∆HFA.
e) Chứng minh: CH.CF = CD.CB
f) Chứng minh: góc CMH=góc CFM
Chứng minh: DM2 = DH.DA
1. Cho tam giác ABC. Trên cạnh AB lấy D, trên cạnh AC lấy E sao cho AD/AB = AE/AC
a) Chứng minh: AD/BD = AE/EC
b) Tính BC biết AD = 2cm, BD = 1cm, DE = 3cm.
2. Cho tam giác ABC có AB = 11cm. Lấy D trên đoạn AB sao cho AD = 4cm. Qua D kẻ DE // BC (E thuộc AC).
Biết EC-AE = 1,5cm, BC = 8cm.
a) Tính tỉ số AE: EC
b) Tính các đoạn thẳng AE, DE?
3.Cho hình thang ABCD (AB//CD) Gọi O là giao điểm của AC và BD. a) Chứng minh: OA.OD = OB.OC b) Qua O kẻ MN // AB (M ∈ AD, N ∈ BC). Chứng minh O là trung điểm của MN.1. Cho tam giác ABC. Trên cạnh AB lấy D, trên cạnh AC lấy E sao cho AD/AB = AE/AC
a) Chứng minh: AD/BD = AE/EC
b) Tính BC biết AD = 2cm, BD = 1cm, DE = 3cm.
2. Cho tam giác ABC có AB = 11cm. Lấy D trên đoạn AB sao cho AD = 4cm. Qua D kẻ DE // BC (E thuộc AC).
Biết EC-AE = 1,5cm, BC = 8cm.
a) Tính tỉ số AE: EC
b) Tính các đoạn thẳng AE, DE?
3.Cho hình thang ABCD (AB//CD) Gọi O là giao điểm của AC và BD.
a) Chứng minh: OA.OD = OB.OC
b) Qua O kẻ MN // AB (M ∈ AD, N ∈ BC). Chứng minh O là trung điểm của MN.