Tam giác đồng dạng

KM

Cho ∆ABC vuông tại A có phân giác của góc ABC cắt AC tại D. Từ D vẽ đường thẳng song song BC cắt AB tại M. a) Giả sử AB = 6cm, AD = 3cm, CD = 5cm. Tính BC. Tính tỉ số diện tích của ∆AMD với ∆ABC b) Vẽ DE BC tại E. Chứng minh: ∆AMD ∽ ∆EDC. Từ đó suy ra: c) Từ C vẽ đường thẳng vuông góc với BD cắt BD tại I. Chứng minh: BC^2 = BD.BI + CD.CA

AD
2 tháng 5 2023 lúc 16:41

loading...  a. Tính BC

BC^2 = AC^2 + AB^2

BC^2 = 6^2 + ( AD + DC )^2 = 8^2

BC^2 = 36 + 64 = 100 

BC = căng bậc 100 = 10 cm

Tính tỉ số diện tích

Xét tam giác ABC có MD // BC 

 tam giác AMD ~ tam giác ABC

=>Diện tích tam giác AMD / Diện tích tam giác ABC = (AD/AC)^2=(3/8)^2=9/16 cm2

b.Xét tam giác AMD và tam giác EDC có 

Góc MAD = góc CED = 90° (gt) 

Góc D chung

=> tam giác AMD ~ tam giác EDC (g.g)

=>MD/AD = DC/EC

=>MD.EC=AD.DC

c. Xét tam giác BCI và tam giác BDE có

 Góc BCI = Góc BED = 90°(gt)

Góc B chung

=> Tam giác BCI ~ tam giác BDE(g.g)

=> BC/BI = BD/BE 

=> BC.BE = BI.BD(1)

Xét tam giác CBA và tam giác CDE có 

Góc CAB = góc CED =90° (gt)

Góc C chung 

=> Tam giác CBA ~ tam giác CDE(g.g)

=> CB/CA=CD/CE

=> CB.CE = CA.CD(2) 

Từ (1) và (2) ta cộng cho 2 vế

=>BC.BE + CB.CE = BD.BI + CA.CD

=>(BE+CE)BC = BD.BI + CA.CD

=> BC.BC = BD.BI + CA.CD

=> BC^2 = BD.BI + CA.CD

 

Bình luận (0)

Các câu hỏi tương tự
PH
Xem chi tiết
NL
Xem chi tiết
TH
Xem chi tiết
NL
Xem chi tiết
MK
Xem chi tiết
ND
Xem chi tiết
PN
Xem chi tiết
RT
Xem chi tiết
AH
Xem chi tiết