Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

TD

cho hệ pt : x+my=2

mx -2y=1

a, giải hệ pt khi m=2

b, tìm m thuộc Z để hpt có nghiệm duy nhất (x;y) sao cho x>0,y<0

PT
5 tháng 1 2018 lúc 19:05

a, Khi m=2, hệ pt có dạng

\(\left\{{}\begin{matrix}x+2y=2\\2x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\2x-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\2\times1-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\end{matrix}\right.\)

Vậy hệ pt có nghiệm (1;1/2)

b, \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m\left(2-my\right)-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-m^2y-2y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\\left(-m^2-2\right)y+2m-1=0\left(\cdot\right)\end{matrix}\right.\)

Hệ pt có nghiệm duy nhất khi pt (.) có nghiệm duy nhất

\(\Leftrightarrow-m^2-2\ne0\Leftrightarrow-m^2\ne2\Leftrightarrow m^2\ne-2\)(luôn đúng)

\(\forall m\) ( 1 ) , hê pt có dạng

\(\left\{{}\begin{matrix}x=2-my\\\left(-m^2-2\right)y=1-2m\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y=\dfrac{1-2m}{-m^2-2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2-\dfrac{m\left(1-2m\right)}{-m^2-2}\\y=\dfrac{1-2m}{-m^2-2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-2m^2-4-m+2m^2}{-m^2-2}\\y=\dfrac{1-2m}{-m^2-2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+4}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)

Để x>0 thì \(\dfrac{m+4}{m^2+2}>0\) mà m2+2 > 0 ( luôn đúng) \(\Rightarrow m+4>0\Leftrightarrow m>-4\left(2\right)\)

Để y<0 thì \(\dfrac{2m-1}{m^2+2}< 0\) mà m2+2 > 0 ( luôn đúng )

\(\Rightarrow2m-1< 0\Leftrightarrow m< \dfrac{1}{2}\left(3\right)\)

Từ (1),(2),(3) \(\Rightarrow\forall m\) thỏa mãn \(-4< m< \dfrac{1}{2}\) thì hệ pt đã cho có nghiệm duy nhất (x;y) sao cho x>0 , y< 0

Bình luận (0)

Các câu hỏi tương tự
VL
Xem chi tiết
NN
Xem chi tiết
BA
Xem chi tiết
HD
Xem chi tiết
TN
Xem chi tiết
PT
Xem chi tiết
TN
Xem chi tiết
AP
Xem chi tiết
AP
Xem chi tiết