Chương IV - Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

LC

Cho hệ phương trình: \(\left\{{}\begin{matrix}x^3y^2-2x^2y-x^2y^2+2xy+3x-3=0\\y^2+x^{2017}=y+3m\end{matrix}\right.\). Tìm các giá trị của \(m\) để hệ phương trình có hai nghiệm phân biệt \(\left(x_1;y_1\right)\)\(\left(x_2;y_2\right)\) thoả mãn điều kiện \(\left(x_1+y_2\right)\left(x_2+y_1\right)+3=0\).

NL
9 tháng 3 2020 lúc 16:25

\(x^3y^2-x^2y^2-2x^2y+2xy+3x-3=0\)

\(\Leftrightarrow x^2y^2\left(x-1\right)-2xy\left(x-1\right)+3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2y^2-2xy+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(xy-1\right)^2+2=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow y^2-y-3m+1=0\) (1)

\(\Delta=1-4\left(-3m+1\right)=12m-3>0\Rightarrow m>\frac{1}{4}\)

Gọi \(y_1;y_2\) là 2 nghiệm của (1) \(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=1\\y_1y_2=-3m+1\end{matrix}\right.\)

\(\left(1+y_2\right)\left(1+y_1\right)+3=0\)

\(\Leftrightarrow y_1y_2+y_1+y_2+4=0\)

\(\Leftrightarrow-3m+1+5=0\) \(\Rightarrow m=2\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
PA
Xem chi tiết
TT
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
CP
Xem chi tiết
NL
Xem chi tiết
SN
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết