a/ \(\left\{{}\begin{matrix}a\sqrt{2}-b\sqrt{3}=3\\a+2b\sqrt{3}=-3\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a\sqrt{2}-2b\sqrt{3}=6\\a+2b\sqrt{3}=-3\sqrt{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\frac{6-3\sqrt{2}}{2\sqrt{2}+1}\\b=-\frac{9}{2\sqrt{6}+\sqrt{3}}\end{matrix}\right.\)
b/- Với \(b=0\) hệ vô nghiệm
- Với \(b\ne0\)
\(\left\{{}\begin{matrix}2ax-2by=6\\3x+2by=-a\end{matrix}\right.\) \(\Rightarrow\left(2a+3\right)x=6-a\)
Hệ có nghiệm khi \(2a+3\ne0\Rightarrow a\ne-\frac{3}{2}\)
Vậy hệ vô nghiệm khi \(\left[{}\begin{matrix}b=0\\a=-\frac{3}{2}\end{matrix}\right.\)