Cho hệ pt: \(\left\{{}\begin{matrix}x+my=3\\mx+4y=6\end{matrix}\right.\)
Gọi nghiệm của hệ phương trình là (x;y). Tìm m để pt có nghiệm x > 1, y > 0
Cho hệ phương trình:
\(\left\{{}\begin{matrix}mx-y=1\\4x-my=2\end{matrix}\right.\)
Tìm m để hệ phương trình đã cho có 1 nghiệm duy nhất
Cho hệ phương trính:
\(\left\{{}\begin{matrix}3x-2y=6\\mx+y=3\end{matrix}\right.\)
Tìm các giá trị của tham số m để phương trính trên có nghiemm65 duy nhất thỏa mãn x>0,y>0
Định m nguyên để hệ có nghiệm duy nhất là nghiệm nguyên:
\(\left\{{}\begin{matrix}\left(m+1\right)x+2y=m-1\\m^2x-y=m^2+2m\end{matrix}\right.\)
Định m, n để hệ phương trình sau có nghiệm là (2; -1)
\(\left\{{}\begin{matrix}2mx-\left(m+1\right)y=m-n\\\left(m+2\right)x+3ny=2m-3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x\sqrt{5}-\left(1+\sqrt{3}\right)y=1\\\left(1+\sqrt{3}\right)x+y\sqrt{5}=1\end{matrix}\right.\)giải hệ phương trình
Giải hệ phương trình
\(\left\{{}\begin{matrix}x-y=2\\3x+2y=11\end{matrix}\right.\)
Xác định m để hệ pt \(\left\{{}\begin{matrix}x+y=m+2\\3x+5y=2m\end{matrix}\right.\)có nghiệm (x;y) thỏa mãn điều kiện \(\left|x+y\right|=1\)
Giải phương trịnh, hệ phương trình sau:
a) \(\left\{{}\begin{matrix}x^2+y^2=1\\x^2-x=y^2-y\end{matrix}\right.\)
b) \(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
Giải hệ phương trình :\(\left\{{}\begin{matrix}x+xy+y=1\\y+yz+z=4\\z+xz+x=9\end{matrix}\right.\) trong đó x,y,z>0