Cho tứ giác ABCD tìm quỹ tích điểm M a: MA+ 2MB = 3MC + CD Véc tơ đó b: 2|MA+MB+MC|=3|MB+ MC| c: |2MA+MB| =|4MB-MC| d: MA+3MB+4MC=0
cho hình bình hành ABCD . Tìm tập hợp các điểm M sao cho : MA2 + MB2 + MC2 + MD2 = k2 , trong đó k là một số cho trước
Cho ΔABC . Tìm tập hợp điểm M thõa mãn \(\left|3\overrightarrow{MA}+2\overrightarrow{MB}-2\overrightarrow{MC}\right|=\left|\overrightarrow{MB}-\overrightarrow{MC}\right|\)
Cho tam giác ABC đều cạnh a. Tìm tập hợp điểm M thoả: MA^2+MB^2+MC^2= 2a^2
Cho ΔABC trọng tâm G , gọi I là trung điểm BC . Tìm M là điểm thõa mãn \(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)
Cho ΔABC có trọng tâm G . Tìm tập hợp điểm M thõa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AC}\right|\)
cho 2 đường thẳng a và b cắt nhau tại M . Trên a có 2 điểm A và B , trên b có 2 điểm C và D đều khác M sao cho vector MA nhân vector MB = vector MC nhân vector MD . Chứng minh rằng 4 đỉnh A , B , C , D cùng nằm trên 1 đường tròn
Trong mặt phẳng toạ độ Oxy cho tam giác ABC có : A(3,1) B(5,3) C(-1,1)
a) chứng tỏ tam giác ABC vuông cân
b) Tìm toạ độ của điểm M biết vecto MA - 2 vecto MB + 4 vecto MC = vector 0
c) tính diện tích tam giác ABC
d) Tìm N thuộc Oy để NB + NC nhỏ nhất