Bài 1: Sự đồng biến và nghịch biến của hàm số

NC

Cho hàm số: \(y=x+cos^2x\). Xác định tính đơn điệu của hàm số

HV
6 tháng 7 2023 lúc 16:09

Đạo hàm của hàm số y = x +` cos^2(x)`
Đạo hàm của x là 1
Đạo hàm của `cos^2(x) là -2sin(x)cos(x)` (sử dụng công thức đạo hàm của `cos^2(x)`).

Vậy, đạo hàm của hàm số y = x + `cos^2(x)` là `dy/dx = 1 - 2sin(x)cos(x).`

Khi `sin(x)cos(x) < 1/2`, tức là x thuộc khoảng `(0, π)` hoặc `(2π, 3π)`, ta có `1 - 2sin(x)cos(x) > 0.`

Khi `sin(x)cos(x) > 1/2`, tức là x thuộc khoảng `(π, 2π)`, ta có `1 - 2sin(x)cos(x) < 0.`

Vậy, trên các khoảng `(0, π)` và `(2π, 3π)`, đạo hàm là dương, và trên khoảng `(π, 2π)`, đạo hàm là âm.

Kết luận: hàm số y = x + `cos^2(x)` tăng trên các khoảng `(0, π)` và `(2π, 3π)`, và giảm trên khoảng `(π, 2π).`

Vậy, tính đơn điệu của hàm số y = x + `cos^2(x)` là tăng trên các khoảng `(0, π)` và `(2π, 3π)`, và giảm trên khoảng `(π, 2π).`

Bình luận (1)
MA
6 tháng 7 2023 lúc 16:17

\(y'=1-2.cosx.sinx=1-sin2x\le0,\forall x\)

Vậy hàm số nghịch biến trên R

Bình luận (2)

Các câu hỏi tương tự
NC
Xem chi tiết
HH
Xem chi tiết
H24
Xem chi tiết
PP
Xem chi tiết
NC
Xem chi tiết
TN
Xem chi tiết
AN
Xem chi tiết
NC
Xem chi tiết
NC
Xem chi tiết