Lời giải:
Ta có:
\(y=x^2-2mx-2m=x^2-2mx+m^2-(m^2+2m)\)
\(=(x-m)^2-(m^2+2m)\)
Vì \((x-m)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow y=(x-m)^2-(m^2+2m)\geq -(m^2+2m)\)
Hay \(y_{\min}=-(m^2+2m)\)
Vậy để \(y_{\min}=-3\Rightarrow m^2+2m=3\)
\(\Leftrightarrow m^2+2m-3=0\Leftrightarrow \left[\begin{matrix} m=1\\ m=-3\end{matrix}\right.\)