Lời giải:
Thay $x=1$ và $y=4$ ta có:
$4=(m^2-2m+5).1^2$
$\Leftrightarrow m^2-2m+5=4$
$\Leftrightarrow m^2-2m+1=0$
$\Leftrightarrow (m-1)^2=0\Rightarrow m=1$
Vậy........
Lời giải:
Thay $x=1$ và $y=4$ ta có:
$4=(m^2-2m+5).1^2$
$\Leftrightarrow m^2-2m+5=4$
$\Leftrightarrow m^2-2m+1=0$
$\Leftrightarrow (m-1)^2=0\Rightarrow m=1$
Vậy........
1)Giải và biện luận các phương trình sau
a) {mx+(m+1)y=m+1
{2x+my=2
b) {mx+(m-2)y=5
{(m+2)x+(m+1)y=2
c){(m-1)x+2y=3m-1
{(m+2)x-y=1-m
d) {(m+4)x-(m+2)y=4
{(2m-1)x+(m-4)=m
e) {(m+1)x-2y=m-1
{m^2x-y=m^2+2m
f) {mx+2)y=m+1
{2x+my=2m+5
2)Trong các hệ pt sau hãy:
i) Giải và biện luận ii)Tìm m thuộc Z để hệ có nghiệm duy nhất là nghiệm nguyên
a) {(m+1)x-2y=m-1
{x+4(m+1)y=4m
b) {mx-y=1
{x+4(m+1)y=4m
c) {mx+y-3=3
{x+my-2m+1=0
3)Trong các hệ phương trình
i) Giải và biện luận
ii) Khi hệ có nghiệm (x,y), tìm hệ thức giữa x,y độc lập độc lập đối với m
a){mx+2y=m+1
{2x+my=2m+5
b) {6mx+(2-m)y=3
{(m-1)x-my=2
c){mx+(m-1)y=m+1
{2x+my=2
1. Cho hpt \(\left\{{}\begin{matrix}x+y=4\\2x+3y=m\end{matrix}\right.\)
Tìm m để hpt có nghiệm (x;y) thỏa \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\)
2. Cho hpt \(\left\{{}\begin{matrix}2x+y=3m+1\\3x+2y=2m-3\end{matrix}\right.\)
Với giá trị nào của m thì hpt có nghiệm (x;y) thỏa \(\left\{{}\begin{matrix}x< 1\\y< 6\end{matrix}\right.\)
1)Xác định m và n để các phương trình sau đây là phương trình bậc hai
a) (m-2).x^3+3.(n^2-4n+m).x^2-4x+7=0
b) (m^2-1).x^3-(m^2-4m+3).x^2-3x+2=0
2) Cho các phương trình sau. Gọi x1 là nghiệm cho trước hãy định m để phương trình có nghiệm x1 và tính nghiệm còn lại
a) x^2-2mx+m^2-m-1 =0 (x1=1)
b) (m-1)x^2+(2m-2).x+m+3 =0 (x1=0)
c) (m^2-1).x^2+ (1-2m).x+2m-3 = 0 (x1=-1)
x² - 2(m - 2)x + m² - 5m - 4 = 0 (1) m là tham số a giải phương trình 1 với M = 1 b tìm tất cả các giá trị của tham số m để phương trình 1 có 2 nghiệm phân biệt x1 x2 thỏa mãn x1 bình + X2 bình bằng -3 x1 x2 - 4
1. Cho hpt \(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y=1\end{matrix}\right.\)
Xác định giá trị của m để hpt có nghiệm (x;y) thỏa : x-y=2
2. Cho hpt : \(\left\{{}\begin{matrix}mx-2y=m\\-2x+y=m+1\end{matrix}\right.\)
Tính giá trị của tham số m để hpt có nghiệm duy nhất và tính nghiệm duy nhất đó theo m.
Cho phương trình bậc hai (ẩn x); x2-5x+m-3=0 (1). a) giải phương trình(1) khi m=7. b) tìm m để phương trình (1) có hai nghiệm phân biệt. c) giả sử phương trình (1) có nghiệm hãy tìm giá trị của m để x1/x2+x2/x1=3/5
trên mặt phẳng tọa độ Oxy cho Parapol (P) : y=x^2 và đường thẳng d : y=x^2 -m +3
a, tìm tọa độ giao điểm của d và P khi m=1
b, tìm m để d cắt P tại 2 điểm phân biệt
c, với gtri nào của m thì P và d cắt nhau tại hai điểm phân biệt M(x1;y1); N(x1;x2) thỏa mãn y1+y2=3
Bài tập 1 Cho hệ phương trình {mx-2y=-1
{2x+3y=1 (1)
1. Giải hệ phương trình (1) khi m = 3 .
2. Tìm m để hệ phương trình có nghiệm x =- \(\dfrac{1}{2}\) và y =\(\dfrac{2}{3}\) .
3. Tìm nghiệm của hệ phương trình (1) theo m.
Bài tập 1 Cho hệ phương trình (1)
1. Giải hệ phương trình (1) khi m = 3 .
2. Tìm m để hệ phương trình có nghiệm x = và y = .
3. Tìm nghiệm của hệ phương trình (1) theo m.