Bài 2: Cực trị hàm số

MN

Cho hàm số y = x3 - 3mx2 + 4m2 - 2 có đồ thị (C) và điểm C(1; 4). Tính tổng các giá trị nguyên dương của m để (C) có hai điểm cực trị A, B sao cho tam giác ABC có diện tích bằng 4

NL
5 tháng 2 2021 lúc 1:48

\(y'=3x^2-6mx=0\Rightarrow3x\left(x-2m\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2m\end{matrix}\right.\) (\(m\ne0\))

\(\Rightarrow\left[{}\begin{matrix}A\left(0;4m^2-2\right)\\B\left(2m;-4m^3+4m^2-2\right)\end{matrix}\right.\)

Bạn nên biết công thức này: công thức diện tích tam giác khi biết tọa độ 3 điểm:

\(S_{ABC}=\dfrac{1}{2}\left|\left(x_B-x_A\right)\left(y_C-y_A\right)-\left(x_C-x_A\right)\left(y_B-y_A\right)\right|\)

Áp nó vào bài toán:

\(\left|2m.\left(6-4m^2\right)-1.\left(-4m^3+4m^2-2\right)\right|=8\)

\(\Leftrightarrow...\)

Bình luận (1)

Các câu hỏi tương tự
HL
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
UH
Xem chi tiết
NM
Xem chi tiết
NT
Xem chi tiết
LC
Xem chi tiết
LT
Xem chi tiết