cho hàm số y= \(\dfrac{1}{2}x+1\) (d\(_1\)) và y= -x -1 (d\(_2\))
a, vẽ đồ thị 2 hàm số trên cùng 1 mặt phẳng tọa độ
b, tìm số đo góc alpha mà (d\(_1\)) tạo với trục OX và số đo góc beta mà (d\(_2\)) tạo với trục OX
Cho ba hàm số: \(y=\dfrac{1}{2}x^2;y=x^2;y=2x^2.\)
a) Vẽ đồ thị của ba hàm số này trên cùng một mặt phẳng tọa độ.
b) Tìm ba điểm A, B ,C có cùng hoành độ x = -1,5 theo thứ tự nằm trêm ba đồ thị. Xác định tung độ tương ứng của chúng.
c) Tìm ba điểm A'; B';C' có cùng hoành độ x = 1,5 theo thứ tự nằm trên ba đồ thị. Kiểm tra tính đối xứng của A và A'; B và B'; C và C'.
d) Với mỗi hàm số trên, hãy tìm giá trị của x để hàm số đó có giá trị nhỏ nhất.
Cho hàm số y=x² ; y=2x+3 a, vẽ các đồ thị trên cùng 1 mặt phẳng tọa độ b, tìm hoành độ giao điểm chung của 2 đồ thị
Cho hai hàm số \(y=\dfrac{1}{3}x^2\) và \(y=-x+6.\)
a) Vẽ đồ thị của các hàm số này trên cùng một mặt phẳng tọa độ.
b) Tìm tọa độ các giao điểm của hai đồ thị đó.
Cho hai hàm số \(y=0,2x^2\) và \(y=x\)
a) Vẽ hai đồ thị của những hàm số này trên cùng một mặt phẳng tọa độ ?
b) Tìm tọa độ của những giao điểm của hai đồ thị ?
Cho hàm số y= 1/4x^2 có đồ thị là (P)
a) Vẽ đồ thị (P) trên mặt phẳng tọa độ Oxy
b) Tìm hoành độ của điểm M thuộc đồ thị (P) biết M có tung độ bằng 100
.Cho hàm số 2 y x2 có đồ thị là parabol (P):
a) Vẽ (P) trên hệ trục tọa độ.
b) Trong các điểm A B C (1;2); ( 1; 2); (10; 200) , điểm nào thuộc (P) , điểm nào không thuộc (P) ?
Cho hàm số :
\(y=ax^2\)
a) Xác định hệ số a biết rằng đồ thị của nó cắt đường thẳng \(y=-ax+3\) tại điểm A có hoành độ bằng 1
b) Vẽ đồ thị của hàm số \(y=-2x+3\) và của hàm số \(y=ax^2\) với giá trị của a) vừa tìm được trong câu a trên cùng một mặt phẳng tọa độ
c) Nhờ đồ thị xác định tọa độ của giao điểm thứ hai của hai đồ thị vừa vẽ trong câu b)
Cho hàm số :
\(y=\dfrac{3}{4}x^2\)
a) Vẽ đồ thị của hàm số
b) Tìm trên đồ thị điểm A có hoành độ bằng -2. Bằng đồ thị, tìm tung độ của A
c) Tìm trên đồ thị các điểm có tung độ bằng 4. Tính gần đúng (làm tròn đến chữ số thập phân thứ nhất) hoành độ của những điểm này bằng hai cách :
- Ước lượng trên đồ thị
- Tính theo công thức \(y=\dfrac{3}{4}x^2\)