Chương III - Hệ hai phương trình bậc nhất hai ẩn

NL

Cho hàm số y = \(\left(\sqrt{2n+5}-2\right)x^2\) với n \(\ge\) \(-\dfrac{5}{2}\); n \(\ne-\dfrac{1}{2}\)

Tìm các giá trị của tham số n để hàm số:

a) Nghịch biến với mọi x < 0

b) Đồng biến với mọi x < 0

NT
24 tháng 2 2021 lúc 21:12

a) Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) nghịch biến với mọi x<0 thì 

\(\sqrt{2n+5}-2>0\)

\(\Leftrightarrow\sqrt{2n+5}>2\)

\(\Leftrightarrow2n+5>4\)

\(\Leftrightarrow2n>-1\)

\(\Leftrightarrow n>-\dfrac{1}{2}\)

Kết hợp ĐKXĐ, ta được: \(n>-\dfrac{1}{2}\)

Vậy: Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) nghịch biến với mọi x<0 thì \(n>-\dfrac{1}{2}\)

b) Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) đồng biến với mọi x<0 thì \(\sqrt{2n+5}-2< 0\)

\(\Leftrightarrow\sqrt{2n+5}< 2\)

\(\Leftrightarrow2n+5< 4\)

\(\Leftrightarrow2n< -1\)

\(\Leftrightarrow n< -\dfrac{1}{2}\)

Kết hợp ĐKXĐ, ta được: \(-\dfrac{5}{2}\le n< \dfrac{1}{2}\)

Vậy: Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) đồng biến với mọi x<0 thì \(-\dfrac{5}{2}\le n< \dfrac{1}{2}\)

Bình luận (0)
H24
24 tháng 2 2021 lúc 21:02

a,Nghịch biến khi `x<0`

`<=>\sqrt{2n+5}-2>0(x>=-5/2)`

`<=>\sqrt{2n+5}>2`

`<=>2n+5>4`

`<=>2n> -1`

`<=>n> -1/2`

Kết hợp ĐKXĐ:

`=>n>1/2`

b,Đồng biến với mọi `x<0`

`<=>\sqrt{2n+5}-2<0`

`<=>\sqrt{2n+5}<2`

`<=>2n+5<4`

`<=>2n< -1`

`<=>n< -1/2`

Kết hợp ĐKXĐ:

`=>-5/2<x< -1/2`

Bình luận (1)

Các câu hỏi tương tự
NL
Xem chi tiết
NL
Xem chi tiết
HH
Xem chi tiết
MS
Xem chi tiết
NM
Xem chi tiết
CT
Xem chi tiết
NL
Xem chi tiết
HL
Xem chi tiết
TL
Xem chi tiết