Bài 3. Hàm số mũ. Hàm số lôgarit

H24

Cho hàm số mũ \(y = {2^x}\)

a)     Tìm giá trị y tương ứng với giá trị của x trong bảng sau:

b)    Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm trong bảng giá trị ở câu a.

Bằng cách tương tự, lấy nhiều điểm \(\left( {x;{2^x}} \right)\) với \(x \in \mathbb{R}\) và nối lại, ta được đồ thị hàm số \(y = {2^x}\) (Hình 1)

c)     Cho biết tọa độ giao điểm của đồ thị hàm số \(y = {2^x}\) với trục tung và vị trí của đồ thị hàm số đó so với trục hoành.

d)    Quan sát đồ thị hàm số \(y = {2^x}\), nêu nhận xét về:

\(\mathop {\lim {2^x}}\limits_{x \to  + \infty } ;\,\mathop {\lim {2^x}}\limits_{x \to  - \infty } \)Sự biến thiên của hàm số \(y = {2^x}\) và lập bảng biến thiên của hàm số đó.
NT
22 tháng 9 2023 lúc 20:00

a: 

x-10123
y\(\dfrac{1}{2}\)1248

b: Tham khảo:

c: Tọa độ giao điểm của hàm số với trục tung là B(0;1)

Đồ thị hàm số này ko cắt trục hoành

d: 

\(\lim\limits_{x\rightarrow+\infty}2^x=+\infty;\lim\limits_{x\rightarrow-\infty}2^x=+\infty\)

=>Hàm số này đồng biến trên R

Bảng biến thiên:

Bình luận (0)
MP
22 tháng 9 2023 lúc 18:14

tham khảo

loading...

b)    Biểu diễn các điểm ở câu a:

loading...

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết