Cho hai vecto a và b sao cho \(\left|\overrightarrow{a}\right|=\sqrt{2},\left|\overrightarrow{b}\right|=2\) và hai vecto \(\overrightarrow{x}=\overrightarrow{a}+\overrightarrow{b},\overrightarrow{y}=\overrightarrow{2a}-\overrightarrow{b}\) vuông góc với nhau. Tính góc giữa hai vecto \(\overrightarrow{a},\overrightarrow{b}\)
\(\overrightarrow{x}\) ⊥ \(\overrightarrow{y}\)
⇒ \(\left(\overrightarrow{a}+\overrightarrow{b}\right)\left(\overrightarrow{2a}-\overrightarrow{b}\right)=0\). Đặt \(\left|\overrightarrow{a}\right|=a;\left|\overrightarrow{b}\right|=b\)
⇒ 2a2 - \(\overrightarrow{a}.\overrightarrow{b}\) + 2\(\overrightarrow{a}.\overrightarrow{b}\) - b2 = 0
⇒ \(\overrightarrow{a}.\overrightarrow{b}\) = b2 - 2a2 = 4 - 4 = 0
⇒ \(\left(\overrightarrow{a};\overrightarrow{b}\right)=90^0\)