\(P=cos2a=1-2sin^2a=1-2.\left(\dfrac{4}{5}\right)^2=-\dfrac{7}{25}\)
\(P=cos2a=1-2sin^2a=1-2.\left(\dfrac{4}{5}\right)^2=-\dfrac{7}{25}\)
Tính
\(sin\dfrac{\pi}{30}.sin\dfrac{7\pi}{30}.sin\dfrac{13\pi}{30}.sin\dfrac{19\pi}{30}.sin\dfrac{25\pi}{30}\)
Rút gọn:
C= \(sin^2\dfrac{\pi}{3}+sin^2\dfrac{5\pi}{6}+sin^2\dfrac{\pi}{9}+sin^2\dfrac{11\pi}{18}+sin^2\dfrac{13\pi}{18}+sin^2\dfrac{2\pi}{9}\)
D=\(cos\left(x-\dfrac{\pi}{3}\right).cos\left(x+\dfrac{\pi}{4}\right)+cos\left(x+\dfrac{\pi}{6}\right).cos\left(x+\dfrac{3\pi}{4}\right)\)
a) Biến đổi \(\sin\alpha-1\)thành tích
b) Rút gọn biểu thức \(P=\dfrac{\cos\alpha+2\cos3\alpha+\cos5a}{\sin\alpha+2\sin3\alpha+\sin5a}\)
c) Tính giá trị biểu thức \(P=\sin30.\cos60+\sin60.\cos30\)
d) Giá đúng của \(cos\dfrac{2\pi}{7}+\cos\dfrac{4\pi}{7}+\cos\dfrac{6\pi}{7}\)
e) Giá trị đúng của \(\tan\dfrac{\pi}{24}+\tan\dfrac{7\pi}{24}\)
Cho bốn cung trên một đường tròn định hướng
\(\alpha=\dfrac{-5\pi}{6}\), \(\beta=\dfrac{\pi}{3}\)\(\gamma=\dfrac{25\pi}{3}\), \(\delta=\dfrac{19\pi}{6}\). Các cung nào có các điểm cuối trùng nhau. Giải thích rõ
Cho \(sina=\dfrac{3}{5},cosb=-\dfrac{5}{13}\)và \(\dfrac{\pi}{2}< a,b< \pi\)
Tính \(cos\dfrac{a}{2};sin\dfrac{b}{2};tan\left(a+b\right);sin\left(a-b\right)\)
GIÚP VỚI MÌNH ĐANG CẦN GẤP
1. Thu gọn biểu thức sau A=sin4x+sin2x.cos2x
2. Tính giá trị của biểu thức \(A=2sin\dfrac{\pi}{6}+3cos\dfrac{\pi}{3}+tan\dfrac{\pi}{4}\)
3. Tính các giá trị lượng giác của \(\alpha\) biết: \(sin\alpha=\dfrac{12}{13};\left(0< \alpha< \dfrac{\alpha}{2}\right)\)
4. Tính giá trị của biểu thức sau: \(A=sinx+cosx.tanx\), nếu \(cosx=\dfrac{1}{2}\) với \(\dfrac{3\pi}{2}< x< 2\pi\)
Cho \(\pi< \alpha< \dfrac{3\pi}{2}\) và sin a = \(\dfrac{-5}{13}\) . Tính cosa , sin2a , cos2a , và sin\(\dfrac{a}{2}\)
Cho \(\alpha\) , \(\beta\in\left(0;\dfrac{\pi}{2}\right)\) và sin \(\alpha\) = \(\dfrac{1}{\sqrt{5}}\) ; Cos \(\alpha\) = \(\dfrac{1}{\sqrt{10}}\) . Tính Cos \(\left(\alpha+\beta\right)\)
Rút gọn biểu thức:
a, A = \(\dfrac{4\sin^2\alpha}{1-\cos\dfrac{\alpha}{2}}\)
b, B = \(\dfrac{1+\cos\alpha-\sin\alpha}{1-\cos\alpha-\sin\alpha}\)
c, C = \(\dfrac{1+\sin\alpha-2\sin^2\left(45^o-\dfrac{\pi}{2}\right)}{4\cos\dfrac{\alpha}{2}}\)