Ôn tập cuối năm môn Hình học

SK

Cho elip (E) có phương trình \(\dfrac{x^2}{16}+\dfrac{y^2}{9}=1\) và điểm \(A\left(1;2\right)\)

a) Tìm độ dài trục lớn, trục nhỏ và tiêu cự của (E)

b) Viết phương trình đường thẳng  \(\Delta\) đi qua điểm A và cắt (E) tại \(M_1\) và \(M_2\) sao cho \(AM_1=AM_2\)

 
TT
9 tháng 4 2017 lúc 22:53

Phương trình đường ELIP có dạng (E) : \frac{x^2}{a^2} +\frac{y^2}{b^2} =1

(E) đi qua M(0; 3), nên : \frac{0}{a^2} +\frac{9}{b^2} =1

=>b= 3.

(E) đi qua N(3; -12/5), nên : \frac{9}{a^2} +\frac{144}{25b^2} =1

=> a = 5.

Phương trình đường ELIP có dạng (E) : \frac{x^2}{a^2} +\frac{y^2}{b^2} =1

có tiệu điểm F(\sqrt{3}; 0) => c = \sqrt{3} => a2 – b2 = 3 (1)

(E) đi qua M(1 ; \frac{\sqrt{3}}{2}), nên : \frac{1}{a^2} +\frac{3}{4b^2} =1 (2)

Từ (1) và (2) , ta được :

a2 = 4 ; b2 = 1

vậy : (E) : \frac{x^2}{4} +\frac{y^2}{1} =1

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
KR
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
GB
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết