a: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB tại H
góc AFE=1/2*sđ cung AE=90 độ
=>góc AFM=90 độ
góc AHM=góc AFM
=>AHFM nội tiếp
b: góc ABE=1/2*sđ cung AE=90 độ
=>AB vuông góc BE
=>BE//OM
a: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB tại H
góc AFE=1/2*sđ cung AE=90 độ
=>góc AFM=90 độ
góc AHM=góc AFM
=>AHFM nội tiếp
b: góc ABE=1/2*sđ cung AE=90 độ
=>AB vuông góc BE
=>BE//OM
Cho đường tròn tâm O, đường kính AB=2R, điểm C thuộc đường tròn O mà góc ABC bằng 30 độ, vẽ dây CD vuông góc với AB tại H, gọi M là điểm chính giữa của cung BC, I là giao điểm của BC và OM. a) chứng minh HCIO nội tiếp b) Gọi K là giao điểm của AM và BC. Chứng minh KC=2KB
Bài 6. (2đ) Cho đường tròn (O; R) và điểm M nằm ngoài đường tròn (O) sao cho OM > 2R.
Vẽ hai tiếp tuyến MA và MB (A, B là tiếp điểm) đến (O). Gọi H là giao điểm của AB và OM.
Kẻ đường kính AC của (O).
a. Chứng minh: OM⏊AB và BC//OM.
b. Tia CH cắt đường tròn (O) tại K (K khác C) và tia AK cắt đoạn OM tại I. Chứng minh
HO.HM = AK.AI và ∆AHI đồng dạng ∆CBH.
c. Chứng minh I là trung điểm HM.
từ điểm m nằm ngoài đường tròn (o) vẽ 2 tiếp tuyến ma mb gọi E là trung điểm cuả MB đường thẳng AE cắt (O) tại C,MC cắt (O) tại D ,H là giao điểm của AB và MO a) chứng minh HE// AM b) chứng minh tứ giác HCEB nội tiếp và AD // MBc) gọi F là giao điểm của BO và(O) K là giao điểm của AD và MF chứng minh KD =3KA
Cho đường tròn (O; R) và dây MN không đi qua tâm O. Kẻ đường kính AB vuông góc với MN tại E. Lấy điểm C thuộc dây MN. BC cắt đường tròn (O;R) tại K. a) Chứng minh: Tứ giác AKCE nội tiếp b) Gọi I là giao điểm của AK và MN, D là giao điểm của AC và BI. Chứng minh C cách đều 3 cạnh của tam giác DEK
Từ một điểm M nằm ngoài đường tròn (O;R). Vẽ hai tiếp tuyến MA,MB ( A,B là tiếp điểm) và một cát tuyến M cắt đường tròn tại C,D (C nằm giữa M và D). Gọi E là giao điểm của AB và OM. 1, Chứng minh MC.MD=ME.MO 2, giả sử OM=3R. Tìm diện tích lớn nhất của túe giác MADB
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O. Các tiếp tuyến tại B và C cắt nhau tại M. Gọi D là giao điểm của AM và đường tròn tâm O. Gọi H là giao điểm của OM và BC.
a) c/m MBOC nội tiếp và MB. MB=MA.MD
b) Tia AH cắt (O) tại E. C/m HO.HM=HA.HE và tứ giác OEMA nội tiếp.
c) Gọi N là giao điểm của AB và EC. C/m MN//BC.
Mọi người giúp mình câu c) với ạ. mình chân thành cảm ơn.
Cho đường tròn (O), hai đường kính AB và CD vuông góc nhau, M là một điểm trên cung nhỏ AC. Tiếp tuyến của đường tròn (O) tại M cắt DC tại S. Gọi I là giao điểm của CD và MB. a) Chứng minh tứ giác AIOM nội tiếp. b) Chứng minh MIC = MDB và MSD = 2MBA c) MD cắt AB tại K. Chứng minh DK.DM không phụ thuộc vị trí của điểm M trên cung AC.
Cho \(\Delta ABC\) nhọn (AB<AC) nội tiếp đường tròn (O). các đường cao BE, CF cắt nhau tại H. Gọi D là giao điểm của AH và BC. Tiếp tuyến tại A của (O) cắt BC tại F
a) Chứng minh tứ giác AEHF nội tiếp và \(\widehat{EAH}=\widehat{EBC}\)
b) Đường kính AK của (O) cắt EF tại M, cắt BC tại N. Tiếp tuyến tại K của (O) cắt AH tại Q. Chứng minh HM // QN
c) Gọi I là trung điểm BC. Đường tròn đường kính AH cắt AI tại P. Chứng minh SA = SP