Ôn thi vào 10

ND

Bài 6. (2đ) Cho đường tròn (O; R) và điểm M nằm ngoài đường tròn (O) sao cho OM > 2R.
Vẽ hai tiếp tuyến MA và MB (A, B là tiếp điểm) đến (O). Gọi H là giao điểm của AB và OM.
Kẻ đường kính AC của (O).
a. Chứng minh: OM⏊AB và BC//OM.
b. Tia CH cắt đường tròn (O) tại K (K khác C) và tia AK cắt đoạn OM tại I. Chứng minh
HO.HM = AK.AI và ∆AHI đồng dạng ∆CBH.
c. Chứng minh I là trung điểm HM.

NT
1 tháng 1 2022 lúc 13:57

a: Xét (O) có 

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

TỪ (1) và (2) suy ra OM⊥AB

Bình luận (0)

Các câu hỏi tương tự
WC
Xem chi tiết
QV
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
NK
Xem chi tiết
2N
Xem chi tiết
WC
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết