Violympic toán 9

TC

Cho đường tròn tâm O bán kính R. Từ điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến cắt đường tròn tại hai điểm B,C. Gọi H là giao điểm của AO và BC. Gọi E là điểm đối xứng của H qua O. Kẻ một đoạn thẳng MN. Với hai điểm M,N lần lượt nằm trên tiếp tuyến AB và AC. Sao cho MN vuông góc với EA tại E. Biết AB = 3R, BH = R/2.

a) Tính diện tích tam giác ABC. b) Chứng minh ABOC nội tiếp. Tính chu vi đường tròn ngoại tiếp tứ giác ABOC. c) Chứng minh tứ giác MBCN là hình thang cân và HB/AN = EN/AB Từ N kẻ tiếp tuyến với đường tròn (O) tại J. Chứng minh rằng : d) Năm điểm J,E,O,C,N nội tiếp đường tròn. e) JN // MH. f) Ba điểm J,E,B thẳng hàng.

Các câu hỏi tương tự
TC
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
VT
Xem chi tiết
1K
Xem chi tiết
ST
Xem chi tiết
NS
Xem chi tiết