Cho đường tròn (O;R), điểm A ở ngoài đường tròn có OA=2R. Từ A kẻ hai tiếp tuyến AB, AC (B, C là hai tiếp điểm)
a. Chứng minh OA ⊥ BC
b. OA cắt đường tròn (O) tại D. Chứng minh tứ giác BOCD là hình thoi
c. Tính AB và diện tích tam giác ABC theo R
d. Chứng minh D là tâm đường tròn nội tiếp tam giác ABC và tính bán kính của của đường tròn đó theo R
a: Xét (O) có
AB là tiếp tuyến có B là tiếp điểm
AC là tiếp tuyến có C là tiếp điểm
Do đó: AB=AC
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(1)
ta có: BA=AC
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay OA⊥BC
Đúng 0
Bình luận (0)