Ôn thi vào 10

NK

Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn. Qua A kẻ 2 tiếp tuyến AB, AC với đường tròn (B,C là các tiếp điểm)
a) Chứng minh: 4 điểm A,B,O,C cùng thuộc một đường tròn
b) Kẻ cát tuyến ADE nằm giữa AO và AB (D nằm giữa A và E), kẻ các tiếp tuyến tại D và E cắt nhau tại S. Nối BC cắt OA tại H. Chứng minh: R^2=OH.OA và 3 điểm S, B,C thẳng hàng 

NT
2 tháng 1 2024 lúc 11:16

a: Xét tứ giác ABOC có \(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\)

nên ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AO là đường trung trực của BC

=>AO\(\perp\)BC tại trung điểm H của BC

Gọi K là giao điểm của OS và ED

Xét (O) có

SE,SD là các tiếp tuyến

Do đó: SE=SD

=>S nằm trên đường trung trực của ED(3)

Ta có: OE=OD

=>O nằm trên đường trung trực của ED(4)

Từ (3) và (4) suy ra SO là đường trung trực của ED

=>SO\(\perp\)ED tại trung điểm K của ED

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2=R^2\left(5\right)\)

Xét ΔODS vuông tại D có DK là đường cao

nên \(OK\cdot OS=OD^2=R^2\left(6\right)\)

Từ (5) và (6) suy ra \(OH\cdot OA=OK\cdot OS\)

=>\(\dfrac{OH}{OK}=\dfrac{OS}{OA}\)

Xét ΔOHS và ΔOKA có

\(\dfrac{OH}{OK}=\dfrac{OS}{OA}\)

góc HOS chung

Do đó: ΔOHS đồng dạng với ΔOKA

=>\(\widehat{OHS}=\widehat{OKA}\)

=>\(\widehat{OHS}=90^0\)

=>HO\(\perp\)SH tại H

mà HO\(\perp\)BH tại H

và SH,BH có điểm chung là H

nên S,H,B thẳng hàng

mà H,B,C thẳng hàng

nên S,B,H,C thẳng hàng

=>S,B,C thẳng hàng

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
DH
Xem chi tiết
CN
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
QN
Xem chi tiết
QH
Xem chi tiết
QH
Xem chi tiết
WC
Xem chi tiết