Ôn thi vào 10

QN

Cho đường tròn (O) và điểm A nằm bên ngoài đường tròn (O). Kẻ 2 tiếp tuyến AB, AC với đường tròn (O), (B, C là tiếp điểm).

a) Chứng minh tứ giác ABOC nội tiếp

b) Qua B kẻ đường thẳng song song với AO, cắt đường tròn (O) tại điểm thứ hai E. Chứng minh 3 điểm C, O, E thẳng hàng

c) Gọi I là giao điểm của đoạn thẳng AO với đường tròn (O), chứng minh I là tâm đường tròn nội tiếp tam giác ABC

d) Trên cung nhỏ BC của đường tròn (O) lấy điểm M tùy ý. Kẻ MR vuông góc với BC, MS vuông góc với CA, MT vuông góc với AB. Chứng minh: MS.MT = MR2

NT
13 tháng 4 2021 lúc 0:06

a) Xét tứ giác ABOC có 

\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Bình luận (0)

Các câu hỏi tương tự
VB
Xem chi tiết
AQ
Xem chi tiết
AQ
Xem chi tiết
AQ
Xem chi tiết
NN
Xem chi tiết
TK
Xem chi tiết
ND
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết