Cho hai đường tròn (O;20cm) và (O';15cm) cắt nhau tại A và B. Tính đoạn nối tâm OO'; biết rằng AB = 24cm (Xét hai trường hợp : O và O' nằm khác phía đối với AB; O và O' nằm cùng phía đối với AB)
Cho hai đường tròn (O) và (O') cắt nhau tại A và B như hình 77. Biết OA = 15cm, O'A = 13 cm, AB = 24cm. Tính độ dài OO' ?
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Dây AC của đường tròn (O) tiếp xúc với đường tròn (O') tại A. Dây AD của đường tròn (O') tiếp xúc với đường tròn (O) tại A. Gọi K là điểm đối xứng với A qua trung điểm I của OO', E là điểm đối xứng với A qua B. Chứng minh rằng :
a) \(AB\perp KB\)
b) Bốn điểm A, C, E, D nằm trên cùng một đường tròn
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Một đường thẳng vuông góc với AB tại B cắt các đường tròn (O) và (O') theo thứ tự tại C và D (khác B).
Chứng minh rằng : \(OO'=\dfrac{1}{2}CD\)
Cho 2 đường tròn (O;R) và (O'R') nằm ngoài nhau. Một đường thẳng d tiếp xúc trong với cả 2 đường tròn tại A,B. Một đường thẳng d' ≠ d tiếp xúc trong với cả 2 đường tròn tại C,D.
Cm: a) AB=CD.
b) Các đường thẳng AB,CD cắt nhau trên đường thẳng OO'
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Kẻ các đường kính AOC, AO'D. Chứng minh rằng ba điểm C, B, D thẳng hàng và \(AB\perp CD\) ?
Cho hai đường tròn (O) và (O') tiếp xúc trong với nhau tại A. Qua A, kẻ cát tuyến cắt (O) và (O') lần lượt tại M và N (M, N khác A). Chứng minh rằng các tiếp tuyến với (O) và (O') lần lượt tại M và N song song với nhau.
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Gọi M là trung điểm của OO'. Đường thẳng qua A cắt các đường tròn (O) và (O’) lần lượt ở C và D.
a, Khi CD ⊥ MA, chứng minh AC = AD.
b, Khi CD đi qua A và không vuông góc với MA.
i, Vẽ đường kính AE của (O), AE cắt (O’) ở H. Vẽ đường kính AF của (O'), AF cắt (O) ở G. Chứng minh AB, EG, FH đồng quy.
ii, Tìm vị trí của CD để đoạn CD có độ dài lớn nhất?
Bài hơi dài nên mn cố gắng giúp mk vs ạ
Cho hai đường tròn ( O1 ) và ( O2 ) ngoài nhau. Gọi AB là một tiếp tuyến chung ngoài và CD là một tiếp tuyến chung trong của hai đường tròn ( A, C ϵ ( O1 ) ; ( B, D ϵ ( O2 ). Chứng minh AC, BD, O1O2 đồng quy