Chương II - Đường tròn

H24

Cho đường tròn (O; R) và một điểm A cố định trên đường tròn đó. Qua A vẽ tiếp tuyến xy. Từ một điểm M trên xy vẽ tiếp tuyến MB với đường tròn (O). Hai đường cao AD và BE của tam giác MAB cắt nhau tại H.

a) Chứng minh rằng ba điểm M, H, O thẳng hàng.

b) Chứng minh rằng tứ giác AOBH là hình thoi.

c) Khi điểm M di động trên xy thì điểm H di động trên đường nào? 

NT
30 tháng 9 2021 lúc 21:30

a: Xét (O) có 

MA là tiếp tuyến có A là tiếp điểm

MB là tiếp tuyến có B là tiếp điểm

Do đó: MA=MB

Xét ΔMAB có MA=MB

nên ΔMAB cân tại M

Suy ra: \(\widehat{MAB}=\widehat{MBA}\)

Xét ΔDAB vuông tại D và ΔEBA vuông tại E có 

BA chung

\(\widehat{DBA}=\widehat{EAB}\)

Do đó: ΔDAB=ΔEBA

Suy ra: \(\widehat{DAB}=\widehat{EBA}\)

hay \(\widehat{HAB}=\widehat{HBA}\)

Xét ΔHBA có \(\widehat{HAB}=\widehat{HBA}\)

nên ΔHBA cân tại H

Suy ra: HA=HB

hay H nằm trên đường trung trực của AB(1)

Ta có:MA=MB

nên M nằm trên đường trung trực của AB(2)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(3)

Từ (1), (2) và (3) suy ra O,H,M thẳng hàng

Bình luận (0)

Các câu hỏi tương tự
SN
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
MT
Xem chi tiết
TO
Xem chi tiết
MT
Xem chi tiết
NT
Xem chi tiết
HP
Xem chi tiết
HN
Xem chi tiết