Chương II - Đường tròn

NK

 Cho đường tròn (O) đường kính AB cố định. Từ điểm C bất kỳ trên đoạn OA vẽ dây MN vuông góc với AB. Lấy điểm D thuộc cung AM nhỏ; BD cắt MN tại E; AD cắt tia NM tại F. a)  Chứng minh : tứ giác ADEC nội tiếp. b)  Chứng minh:  CA.CB = CE.CF c)  Tia AE cắt đường tròn ngoại tiếp tam giác DEF tại điểm I. Chứng minh I nằm trên đường tròn O. d)  Xác định vị trí của điểm C trên OA sao cho chu vi tam giác OCN lớn nhất 

NT
10 tháng 2 2021 lúc 19:49

a) Vì điểm D thuộc cung AM nhỏ nên D nằm trên đường tròn(O)

Xét (O) có

\(\widehat{ADB}\) là góc nội tiếp chắn \(\stackrel\frown{AB}\)

\(\stackrel\frown{AB}\) là nửa đường tròn(AB là đường kính của (O))

Do đó: \(\widehat{ADB}=90^0\)(Hệ quả góc nội tiếp)

hay \(\widehat{ADE}=90^0\)

Xét tứ giác ADEC có

\(\widehat{ADE}\) và \(\widehat{ACE}\) là hai góc đối

\(\widehat{ADE}+\widehat{ACE}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ADEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Bình luận (0)

Các câu hỏi tương tự
CC
Xem chi tiết
NK
Xem chi tiết
LD
Xem chi tiết
NK
Xem chi tiết
TA
Xem chi tiết
KD
Xem chi tiết
LH
Xem chi tiết
KD
Xem chi tiết
HN
Xem chi tiết