Bài 6: Tính chất hai tiếp tuyến cắt nhau

SK

Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm)

a) Chứng minh rằng OA vuông góc với BC

b) Vẽ đường kính CD. Chứng minh rằng BD song song với AO

c) Tính độ dài các cạnh của tam giác ABC; Biết OB = 2cm, OA = 4cm

KD
25 tháng 4 2017 lúc 9:45


dap_hinh-bai-26

a) Vì AB, AC là các tiếp tuyến của (O) nên AB=AC ⇒ ΔABC cân tại A.

Ta có AO là đường phân giác của góc ∠BAC của tam giác cân ABC nên AO cũng là đường cao.Suy ra OA ⊥ BC (tính chất của tam giác cân).

b) Gọi I là giao điểm của AO với BC

Ta có: ΔIBA = ΔICA (Cạnh huyền góc nhọn)

⇒IB = IC

Trong ΔBCD ta có:

IB = ID

OC = OD

 ⇒ OI là đường trung bình của Δ BCD

Nên OI//BD hay AO//BD

Vậy AO//BD(đpcm)

c) Vì AB là tiếp tuyển của (O) với B là tiếp điểm nên AB ⊥ OB và AB = AC

Vậy ΔOAB vuông tại B.

Áp dụng định lí Pytago trong tam giác vuông OAB, ta có:

AO2 = AB2 + BO2

⇒ AB2 = AO2 – BO2 = 42 -22 = 12

⇒ AB = √12 = 2√3 (cm)

Trong tam giác vuông OAB ta có

sinOAB = OB/OA =2/4 = 1/2

⇒ ∠OAB = 300 ⇒∠BAC = 2∠OAB =2.300 = 600

Tam giác ABC cân tại A và có ∠A = 600 nên ΔABC là tam giác đều. Suy ra AB= BC = CA = 2√3 (cm)

Nhận xét. Qua câu c) ta thấy: Góc tạo bởi hai tiếp tuyến của một đường tròn vẽ từ một điểm cách tâm một khoảng bằng đường kính đúng bằng 600.

 
Bình luận (0)
HB
25 tháng 4 2017 lúc 9:52

a) Vì AB, AC là các tiếp tuyến nên AB=AC và ˆA1=ˆA2A1^=A2^.

Suy ra OA⊥BCOA⊥BC (tính chất của tam giác cân).

b) Điểm B nằm trên đường tròn đường kính CD nên ˆCBD=90∘CBD^=90∘.

Suy ra BD//AO (vì cùng vuông góc với BC).

c) Nối OB thì OB⊥AB.OB⊥AB.

Xét tam giác AOB vuông tại B có:\(\sin A_1=\dfrac{OA}{OB}=\dfrac{2}{4}=\dfrac{1}{2}\)

\(\Rightarrow\widehat{A_1}=30^O\Rightarrow\widehat{BAC}=60^O\)

Tam giác ABC cân, có một góc 60\(^o\) nên là tam giác đều.

Ta có AB\(^2\)=OA\(^2\)−OB\(^2\)=4\(^2\)−2\(^2\)=12⇒AB=\(2\sqrt{3}\).

Vậy AB=AC=BC=\(2\sqrt{3}cm\)

Nhận xét. Qua câu c) ta thấy: Góc tạo bởi hai tiếp tuyến của một đường tròn vẽ từ một điểm cách tâm một khoảng bằng đường kính đúng bằng 60\(^O\)



Bình luận (0)
H24
25 tháng 4 2017 lúc 9:52

a) Vì AB, AC là các tiếp tuyến nên AB=AC và \(\widehat{A_1}=\widehat{A_2}\)

Suy ra OA ⊥ BC (tính chất của tam giác cân).

b) Điểm B nằm trên đường tròn đường kính CD nên \(\widehat{CBD}=90^o\)

Suy ra BD//AO (vì cùng vuông góc với BC).

c) Nối OB thì OB ⊥ AB.

Xét tam giác AOB vuông tại B có:

\(\sin A_1=\dfrac{OA}{OB}=\dfrac{2}{4}=\dfrac{1}{2}\)

\(\Rightarrow\widehat{A_1}=30^o\Rightarrow\widehat{BAC}=60^o\)

Tam giác ABC cân, có một góc 60o nên là tam giác đều.

Ta có: AB2 = OA2 - OB2 = 42 - 22 = 12 => AB = \(2\sqrt{3}\)

Vậy AB = AC = BC = \(2\sqrt{3}\)

Nhận xét. Qua câu c) ta thấy: Góc tạo bởi hai tiếp tuyến của một đường tròn vẽ từ một điểm cách tâm một khoảng bằng đường kính đúng bằng 60o

Bình luận (0)
TT
22 tháng 11 2018 lúc 21:56

a) Vì AB, AC là các tiếp tuyến nên AB=AC và ˆA1=ˆA2A1^=A2^

Suy ra OA ⊥ BC(tính chất của tam giác cân).

b) Điểm B nằm trên đường tròn đường kính CD nên ˆCBD=90oCBD^=90o

Suy ra BD//AO (vì cùng vuông góc với BC).

c) Nối OB thì OB ⊥ AB.

Xét tam giác AOB vuông tại B có:

sinA1=OAOB=24=12sin⁡A1=OAOB=24=12

⇒ˆA1=30o⇒ˆBAC=60o⇒A1^=30o⇒BAC^=60o

Tam giác ABC cân, có một góc 60o nên là tam giác đều.

Ta có: AB2 = OA2 - OB2 = 42 - 22 = 12 => AB = 2√323

Vậy AB = AC = BC = 2√323

Nhận xét. Qua câu c) ta thấy: Góc tạo bởi hai tiếp tuyến của một đường tròn vẽ từ một điểm cách tâm một khoảng bằng đường kính đúng bằng 60o

Bình luận (0)
NQ
31 tháng 3 2019 lúc 18:31

a) Vì AB, AC là các tiếp tuyến nên AB=AC và ˆA1=ˆA2A1^=A2^.

Suy ra OA⊥BCOA⊥BC (tính chất của tam giác cân).

b) Điểm B nằm trên đường tròn đường kính CD nên ˆCBD=90∘CBD^=90∘.

Suy ra BD//AO (vì cùng vuông góc với BC).

c) Nối OB thì OB⊥AB.OB⊥AB.

Xét tam giác AOB vuông tại B có:sinA1=OAOB=24=12

⇒A1ˆ=30O⇒BACˆ=60O⇒A1^=30O⇒BAC^=60O

Tam giác ABC cân, có một góc 60\(^o\) nên là tam giác đều.

Ta có AB\(^2\)=OA\(^2\)−OB\(^2\)=4\(^2\)−2\(^2\)=12⇒AB=\(2\sqrt{3}\).

Vậy AB=AC=BC=\(2\sqrt{3}cm\)

Nhận xét. Qua câu c) ta thấy: Góc tạo bởi hai tiếp tuyến của một đường tròn vẽ từ một điểm cách tâm một khoảng bằng đường kính đúng bằng 60

Bình luận (0)
TV
21 tháng 12 2020 lúc 16:06

Ai giải giúp em bài 3 với ạundefinedai

Bình luận (0)

Các câu hỏi tương tự
MM
Xem chi tiết
SK
Xem chi tiết
NT
Xem chi tiết
HT
Xem chi tiết
PL
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết