Trong mặt phẳng Oxy, cho \(\overrightarrow{v}\left(2;0\right)\) và điểm \(M\left(1;1\right)\)
a) Tìm tọa độ của điểm M' là hình ảnh của điểm M qua phép dời hình có được bằng cách thực hiện liên tiếp phép đối xứng qua trục Oy và phép tịnh tiến theo vectơ \(\overrightarrow{v}\)
b) Tìm tọa độ của điểm M" là ảnh của điểm M qua phép dời hình có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ \(\overrightarrow{v}\) và phép đối xứng qua trục Oy
Trong mặt phẳng Oxy, cho vectơ \(\overrightarrow{v}=\left(3;1\right)\) và đường thẳng d có phương trình \(2x-y=0\). Tìm ảnh của d qua phép dời hình có được bằng cách thực hiện liên tiếp phép quay tâm O góc \(90^0\) và phép tịnh tiến theo vectơ \(\overrightarrow{v}\)
Trong mặt phẳng Oxy cho các điểm \(A\left(-3;2\right);B\left(-4;5\right);C\left(-1;3\right)\)
a) Chứng minh rằng các điểm \(A'\left(2;3\right);B'\left(5;4\right);C'\left(3;1\right)\) theo thứ tự là ảnh của A, B, C qua phép quay tâm O góc \(-90^0\)
b) Gọi tam giác \(A_1B_1C_1\) là ảnh của tam giác ABC qua phép dời hình có được bằng cách thực hiện liên tiếp phép quay tâm O góc \(-90^0\) và phép đối xứng qua trục Ox. Tìm tọa độ các đỉnh của tam giác \(A_1B_1C_1\) ?
4. Trong mặt phẳng Oxy, cho đường thẳng d: x − 3y + 1 = 0 và điểm I(−3; 1).
(a) Tìm ảnh của điểm M(1; −2) qua phép đối xứng tâm I.
(b) Tìm ảnh của đường thẳng ∆: 2x + y − 1 = 0 qua phép đối xứng tâm I.
(c) Tìm ảnh của đường tròn (C): (x − 2)2 + (y + 3)2 = 9 qua phép đối xứng
cho tam giác đều ABC nội tiếp đường tròn tâm 0. Lấy điểm M thuộc cạnh AB, điểm N thuộc cạnh AC sao cho AM+AN=AB. Chứng minh OM=ON và góc MON=120
Trong mp Oxy cho điểm A(1,2),đường thẳng d co pt:2x-3y+1=0 và véc tơ
v=(-3,1)
a)Tìm ảnh của A,(d) qua phép dời hình có đc bằng cách thực hiện liên tiếp phép quay tâm O góc quay 90 độ và phép tịnh tiến theo v
b) tìm điểm M sao cho A là ảnh của M qua phép dời hình có đc bằng cách thực hiện liên tiếp phép quay tâm O góc quay- 90 độ và phép tịnh tiến theo v
c) tìm điểm d’ sao cho d là ảnh của d’ qua phép dời hình có đc bằng cách thực hiện liên tiếp phép quay tâm O góc quay- 90 độ và phép tịnh tiến theo v
) Trong mặt phẳng tọa độ Oxy cho điểm M (3; 2) .Tìm ảnh của điểm M qua phép dời hình có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ v(1;5) và phép quay tâm O góc quay 900
Cho tam giác ABC . Trên cạnh AC lấy 14 điểm phân biệt khác hai điểm A C, rồi nối chúng với B . Trên cạnh BC lấy 7 điểm phân biệt khác hai điểm B C, rồi nối chúng với A . Số tam giác đếm được trên hình khi này là k . Khi đó:
A. k =1981 . B. k = 1203 . C. k =1380 . D. k =147
hình H1 gồm ba đường tròn (O1 ; r1) , (O2 ; r2) , (O3 ; r3) đôi một tiếp xúc ngoài với nhau . Hình H2 gồm ba đường tròn (I1 ; r1) , (I2 ; r2) , (I3 ; r3) đôi một tiếp xúc ngoài với nhau . Chứng tỏ rằng 2 hình H1 và H2 bằng nhau .