Chương II - Đường tròn

HN

Cho đường tròn đường kính AB .Qua C thuộc nữa đường tròn kẻ tiếp tuyến d với đường tròn . Gọi E,F lần lượt là chân đường vuông góc kẻ từ A,B đến d và H là chân đường vuông góc kẻ từ C đến AB.Chứng minh câu a CE=CF câu b AC LÀ phân giác của góc BAE câu c CH bình phương =BF nhân AE

NT
28 tháng 12 2020 lúc 12:36

Gọi tâm đường tròn đường kính AB là O

a) Xét (O) có AB là đường kính

nên O là trung điểm của AB

Ta có: OC⊥EF(EF là tiếp tuyến tại C của (O))

BF⊥FE(gt)

AE⊥FE(gt)

Do đó: AE//OC//BF(Định lí 1 từ vuông góc tới song song)

Xét tứ giác AEFB có AE//BF(cmt)

nên AEFB là hình thang có hai đáy là AE và BF(Định nghĩa hình thang)

Hình thang AEFB(AE//FB) có 

O là trung điểm của AB(cmt)

OC//AE//BF(cmt)

Do đó: C là trung điểm của EF(Định lí 3 đường trung bình của hình thang)

hay CE=CF(đpcm)

b) Vì OC//AE(cmt)

nên \(\widehat{EAC}=\widehat{OCA}\)(hai góc so le trong)(1)

Xét ΔOAC có OA=OC(=R)

nên ΔOAC cân tại O(Định nghĩa tam giác cân)

\(\widehat{OAC}=\widehat{OCA}\)(Hai góc ở đáy)(2)

Từ (1) và (2) suy ra \(\widehat{EAC}=\widehat{OAC}\)

hay \(\widehat{EAC}=\widehat{BAC}\)

mà tia AC nằm giữa hai tia AE,AB

nên AC là tia phân giác của \(\widehat{EAB}\)(đpcm)

Bình luận (0)
HN
28 tháng 12 2020 lúc 11:10

s

Bình luận (0)

Các câu hỏi tương tự
YN
Xem chi tiết
H24
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TL
Xem chi tiết
GA
Xem chi tiết
CH
Xem chi tiết
HN
Xem chi tiết