§1. Phương trình đường thẳng

DA

Cho đường thẳng \(d:2x+3y+4=0\) và điểm \(M\left(2;1\right)\). Viết phương trình đường thẳng đi qua M và :

a. Song song với d

b. vuông góc với d

c.tạo với d một góc \(45^0\)

d. tạo với d 1 góc \(\alpha\) mà \(\cos\alpha=\frac{2}{\sqrt{13}}\)

NV
8 tháng 5 2016 lúc 21:04

Bạn không biết làm câu nào vậy

Bình luận (0)
NN
8 tháng 5 2016 lúc 21:06

a\(2x+3y-7=0\)

b\(3x-2y-4=0\)

c. Đường thẳng d có hệ số góc \(k=-\frac{2}{3}\), do đó d không tạo với trục hoành góc \(45^0\). Suy ra đường thẳng \(\Delta\) cần tìm, tạo với d  góc \(45^0\), không có phương vuông góc với Ox. Gọi \(l\) là hệ số góc của  \(\Delta\) , do góc giữa d và  \(\Delta\)  bằng  \(45^0\) nên ta có phương trình :

\(\left|\frac{l+\frac{2}{3}}{1-\frac{2l}{3}}\right|=1\Leftrightarrow\left|3l+2\right|=\left|3-2l\right|\)

Giải phương trình ta thu được :

\(l=\frac{1}{5}\) hoặc \(l=-5\)

* Với \(l=\frac{1}{5}\), ta được \(\Delta:x-5y+3=0\)

* Với \(l=-5\) ta được \(\Delta:5x+y-11=0\)

d. Đường thẳng t cần tìm có vecto pháp tuyến \(\overrightarrow{n}=\left(a;b\right);\left(a^2+b^2\ne0\right)\)

Do góc (t;d) = \(\alpha\) mà \(\cos\alpha=\frac{2}{\sqrt{13}}\) nên ta có phương trình :

\(\frac{\left|2a+3b\right|}{\sqrt{13}.\sqrt{a^2+b^2}}=\frac{2}{\sqrt{13}}\Leftrightarrow\left|2a+3b\right|=2\sqrt{a^2+b^2}\)

                              \(\Leftrightarrow b\left(12a+5b\right)=0\)

- Nếu \(b=0\) thì \(a\ne0\), tùy ý và do đó ta có đường thẳng \(t:x-2=0\)

- Nếu \(12a+5b=0\) do \(a^2+b^2\ne0\), có thể chọn \(a=5;b=-12\), do đó ta được đường thẳng :

\(5x-12y+2=0\)

 

 

 

 
Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
2N
Xem chi tiết
DT
Xem chi tiết
DT
Xem chi tiết
DT
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
FA
Xem chi tiết
H24
Xem chi tiết