Chương IV - Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

H24

Cho đường thẳng (d): y=mx-m+1 và parabol (P); y=x2

a, chứng minh (d) và (P) luôn có điểm chung với mọi m. Với giá trị nào của m thì (d) và (P) tiếp xúc với nhau? khi đó tìm tọa tọa độ của tiếp điểm

b, Gọi x1,x2 là hoành độ các giao điểm của (d) và (P). Tìm GTLN và GTNN của biểu thức \(A=\frac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}\)

NL
2 tháng 6 2019 lúc 16:29

Phương trình hoành độ giao điểm: \(x^2-mx+m-1=0\)

Do \(a+b+c=0\Rightarrow\) pt luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=1\\x_2=m-1\end{matrix}\right.\)

Hay d luôn có điểm chung với (P)

Để d và (P) tiếp xúc nhau \(\Leftrightarrow\) pt có nghiệm kép

\(\Rightarrow x_1=x_2\Rightarrow m-1=1\Rightarrow m=2\)

\(A=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{2m+1}{m^2+2}\)

\(\Leftrightarrow A.m^2-2m+2A-1=0\)

\(\Delta'=1-A\left(2A-1\right)=-2A^2+A+1\ge0\Rightarrow-\frac{1}{2}\le A\le1\)

\(\Rightarrow A_{max}=1\) khi \(m=1\)

\(A_{min}=-\frac{1}{2}\) khi \(m=-2\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
ND
Xem chi tiết
ND
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
SN
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết