Cho AABC vuông tại A, điểm M là trung điểm của BC. Gọi D và E lần lượt là hình chiếu của M trên AB và AC a) Chứng minh: tứ giác ADME là hình chữ nhật. b) Lấy điểm K đối xứng với M qua D. Tứ giác AEDK là hình gì? Vì sao? c) Chứng minh: tứ giác AMBK là hình thoi. d) Gọi I là điểm đối xứng với M qua E. Chứng minh: K đối xứng với I qua A.
cho tam giác abc vuông ở a(ab<ac) . kẻ ah vuông góc với bc tại m. trên tia hc lấy điểm d sao cho hd=hb. gọi p,q theo thứ tự là hình chiếu của d trên ac, ab
a) cmr: tứ giác apdq là hcn
b)gọi k là giao điểm của ad và pq. cmr: hk=1/2ad
c) đường thắng dp giao ah tại e vẽ hcn abgc. cmr tứ giác begc là hình thang cân
. Cho ABC. Gọi M, N, P lần lượt là trung điểm các cạnh AB, AC, BC.
⦁ Chứng minh: Tứ giác MNCB là hình thang, tứ giác BMNP là hình bình hành.
⦁ Gọi O là trung điểm của MN. Chứng minh: 3 điểm A, O, P thẳng hàng.
⦁ Trên tia đối của tia NP lấy điểm F sao cho NF = NP. Trên tia đối của tia MP lấy điểm E sao cho ME = MP. Chứng minh: E đối xứng với F qua A.
⦁ ABC cần thêm điều kiện gì để BE + CF = BC. Chứng minh.
cho hình thang ABCD, AB//CD. M là trung điểm của CD, I là giao điểm của AM và BD; K là giao điểm của BM và AC. gọi O là giao điểm AC và BD.MO cắt AB tại N; BO cắt BC tại S. CMR: N là trung điểm của AB. A;D;S thẳng hàng
Cho hình bình hành ABCD có AB = 2AD. Gọi E là trung điểm của AB, F là trung điểm của CD, I là giao của AF và DE, K là giao điểm của BF và CE
a) Tứ giác AECF là hình gì ? Vì sao ?
b) Tứ giác AEFD là hình gì ? Vì sao ?
c) Tứ giác EIFK là hình gì ? Vì sao ?
d) Tìm điều kiện của hình bình hành ABCD nói trên để EIFK là hình vuông.
Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo. Gọi M,N lần lượt là trung điểm của AO và BO.
1/ Cho AB = 8cm ; BC = 10cm.
a/ Tính diện tính hình chữ nhật ABCD.
b/ C/m DMNC là hình thang cân.
2/ Giả sử AC = 2AD. Gọi E là giao điểm của tia CN và tia DM. C/m tứ giác ADOE là hình thoi.
Cho hình vuông ABCD. Gọi I, K theo thứ tự là trung điểm của các cạnh AB, CD. Nối CI, AK. CMR: a) Tứ giác AICK là hình bình hành. b) Gọi M là trung điểm của BC. Gọi P, Q lần lượt là giao điểm của DM với IC và AK. CMR: DM = AK và DM vuông AK
Cho ΔABC nhọn, đường cao AD và BE cắt nhau tại H. Đường thẳng vuông góc với AD tại A và đường thẳng vuông góc với BD tại B cắt nhau tại F.
a. Tứ giác AFBD là hình gì? Vì sao?
b. Gọi K là giao của AB và DF, I là trung điểm HC. Chứng minh E và D đối xứng với nhau qua KI
cho tam giác ABC vuông tại A (AB<AC). Gọi M là trung điểm của BC .Từ M vẽ MD vuông góc với AB ,ME vuông góc với AC
a) chứng minh D là trung điểm của AB, tứ giác BDEMlà hình bình hành
b) vẽ AD vuông góc vs BC tại H . Gọi K là giao điểm của AH và DE. Đường thẳng DH cắt BK tại J và I là trung điểm của MK .
chứng minh J là trọng tâm tam giác ABH và 3 điểm C,I.J thẳng hàng