Cho \(\left(O;R\right)\) dây MN không đi qua O. Từ M và N kẻ 2 tiếp tuyến cắt nhau tại P. \(OP\cap MN=\left\{K\right\}\)
a) Chứng minh : \(OP\perp MN\)
b) Kẻ đường kính AM. \(AP\cap\left(O\right)=\left\{I\right\}\) Chứng minh :\(PI\cdot PA=PK\cdot PO\) và \(\widehat{PKI}=\widehat{PAO}\)
c) \(MN\cap AP=\left\{B\right\}\)
\(MI\cap OP=\left\{H\right\}\)
Chứng minh: \(BH//MA\)
Câu 4. (3,5 điểm) Cho đường tròn (O;R), đường kính AB. Vẽ điểm C thuộc đường tròn (O;R) sao cho AC = R. Kẻ OH vuông góc với AC tại H. Qua điểm C vẽ một tiếp tuyến của đường tròn (O;R), tiếp tuyến này cắt đường thẳng OH tại D.
1) Chứng minh AD là tiếp tuyến của đường tròn (O;R).
2) Tính BC theo R và các tỉ số lượng giác của góc ABC.
3) Gọi M là điểm thuộc tia đối của tia CA. Chứng min MC.MA = MO2 – AO2
Câu 5. (0,75 điểm) Chứng minh rằng với mỗi số nguyên a thì biểu thức sau luôn nhận giá trị là một số nguyên :
\(D=\sqrt{a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\left(a+5\right)\left(a+6\right)+36}\)
Cho tam giác nhọn ABC nội tiếp đường tròn \(\left(O\right)\). Gọi E là điểm nằm chính giữa cung nhỏ BC. Trên cạnh AC lấy điểm M sao cho \(EM=EC\), đường thẳng BM cắt \(\left(O\right)\) tại N \(\left(N\ne B\right)\). Các đường thẳng EA, EN cắt đường thẳng BC lần lượt tại D, F.
a, Chứng minh \(\Delta AEN\sim\Delta FED\)
b, Chứng minh M là trực tâm của \(\Delta AEN\)
c, Gọi I là trung điểm AN, tia IM cắt \(\left(O\right)\) tại K. Chứng minh dường thẳng CM là tiếp tuyến của đường tròn ngoại tiếp \(\Delta BMK\)
Cho điểm $O$ là trung điểm của đoạn thẳng $AB$. Trên cùng một nửa mặt phẳng bờ $AB$ dựng nửa đường tròn tâm $O$ đường kính $AB$ và nửa đường tròn tâm $O'$ đường kính $AO$. Điểm $M$ thuộc nửa đường tròn $\left( O' \right)$ ($M$ khác $A,O$ và $MA>MO$), tia $OM$ cắt đường tròn $\left( O \right)$ tại $C$. Gọi $D$ là giao điểm thứ hai của $CA$ với nửa đường tròn $\left( O' \right)$.
a) Chứng minh rằng tam giác $ADM$ cân.
b) Gọi $N$ là điểm đối xứng của $A$ qua $M.$ Chứng minh điểm $N$ thuộc đường tròn $\left( O \right)$.
c) Gọi $E$ là giao điểm của hai tiếp tuyến tại $A$ và $C$ của đường tròn $\left( O \right)$. Chứng minh $\frac{1}{A{{C}^{2}}}-\frac{1}{A{{B}^{2}}}=\frac{1}{4C{{E}^{2}}}$.
@Akai Haruma (cố làm giúp em với ạ)
Cho các đường tròn \(\left(O_1;R_1\right)\) và \(\left(O_2;R_2\right)\) tiếp xúc trong tại \(P\) \(\left(R_2>R_1\right)\). Tiếp tuyến tại \(A\) của đường tròn \(\left(O_1\right)\) cắt \(\left(O_2\right)\) tại \(B\) và \(C\). Chứng minh rằng: \(PA\) là tia phân giác của góc \(BPC\).
1 . Cho \(a,b,c\ne0\in Q\) và \(a=b+c\)
CMR : \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\in Q\)
2 . Cho ba số dương x,y,z thõa mãn điều kiện xy+yz+zx=1 tính:
\(A=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x\right)^2\left(1+y^2\right)}{1+z^2}}\)
3 .
Từ điểm M nằm ngoài đường tròn vẽ tiếp tuyến MA tới đường tròn (O; R), ( A là tiếp điểm). Gọi E là trung điểm đoạn AM và hai điểm I, H lần lượt là hình chiếu của E và A trên đường thẳng OM. Qua M vẽ cát tuyến MBC tới đường tròn (O) sao cho MB < MC và tia MC nằm giữa hai tia MA, MO.
a) Chứng minh các hệ thức: MA2 = MB.MC; MA2 = MH.MO.
b) Chứng minh ∆MBH đồng dạng ∆MOC. Từ đó chứng minh tứ giác BCOH nội tiếp đường tròn.
c) Chứng minh . Vẽ tiếp tuyến IK tới đường tròn (O) với K là tiếp điểm. và ∆MKH vuông tại K.
d) Giả sử BC = 3BM và D là trung điểm đoạn MC. Chứng minh: MC tiếp xúc với đường tròn ngoại tiếp ∆ODH
Cho 3 số thực a,b,c chứng minh rằng:
\(ab\left(b^2+bc+ca\right)+bc\left(c^2+ac+ab\right)+ca\left(a^2+ab+bc\right)\le\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)\)
Cho bát giác đều ABCDEFGH nội tiếp (O;R). Gọi I là giao điểm của AC và BF. Chứng minh rằng:
a. BI = \(\frac{R\left(2-\sqrt{2}\right)}{2}\)
b. AB = R . \(\sqrt{2-\sqrt{2}}\)
Cho a,b,c thuộc \(\left[0;2\right]\).Chứng minh rằng \(2\left(a+b+c\right)-\left(ab+bc+ac\right)\le4\)