Violympic toán 9

H24

Cho điểm $O$ là trung điểm của đoạn thẳng $AB$. Trên cùng một nửa mặt phẳng bờ $AB$ dựng nửa đường tròn tâm $O$ đường kính $AB$ và nửa đường tròn tâm $O'$ đường kính $AO$. Điểm $M$ thuộc nửa đường tròn $\left( O' \right)$ ($M$ khác $A,O$ và $MA>MO$), tia $OM$ cắt đường tròn $\left( O \right)$ tại $C$. Gọi $D$ là giao điểm thứ hai của $CA$ với nửa đường tròn $\left( O' \right)$.

a) Chứng minh rằng tam giác $ADM$ cân.

b) Gọi $N$ là điểm đối xứng của $A$ qua $M.$ Chứng minh điểm $N$ thuộc đường tròn $\left( O \right)$.

c) Gọi $E$ là giao điểm của hai tiếp tuyến tại $A$ và $C$ của đường tròn $\left( O \right)$. Chứng minh $\frac{1}{A{{C}^{2}}}-\frac{1}{A{{B}^{2}}}=\frac{1}{4C{{E}^{2}}}$.

@Akai Haruma (cố làm giúp em với ạ)


Các câu hỏi tương tự
BB
Xem chi tiết
SY
Xem chi tiết
KG
Xem chi tiết
18
Xem chi tiết
NN
Xem chi tiết
MT
Xem chi tiết
NS
Xem chi tiết
H24
Xem chi tiết
VT
Xem chi tiết