Cho \(0\le a\le b\le c\le1\). Tìm max
\(A=\left(a+b+c+3\right)\left(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}\right)\)
Cho các số dương a,b,c,d biết \(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}+\dfrac{d}{1+d}\le1.CMRabcd\le\dfrac{1}{81}\)
Cho ba số thực a,b,c sao cho \(1\le a\le2\),\(1\le b\le2\),\(1\le c\le2\)
Chứng minh \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{a}{c}+\dfrac{c}{b}+\dfrac{b}{a}\le7\)
Cho các số thực dương a, b, c thoả mãn \(a+b+c=1\). Chứng minh: \(\dfrac{a}{a+b^2}+\dfrac{b}{b+c^2}+\dfrac{c}{c+a^2}\le \dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Cho a,b,c > 0 và a.b.c = 1
Chứng minh: \(\dfrac{1}{a+2}\)+\(\dfrac{1}{b+2}\)+\(\dfrac{1}{c+2}\)≥1
a, Cho a,b là số thực dương và ab<1. Chứng minh \(\dfrac{1}{1+a}+\dfrac{1}{1+b}\le\dfrac{2}{1+\sqrt{ab}}\)
b, Cho a,b,c là các số thực dương thõa mãn abc=1. Chứng minh \(\dfrac{a}{\left(a+1\right)\left(b+1\right)}+\dfrac{b}{\left(b+1\right)\left(c+1\right)}+\dfrac{c}{\left(c+1\right)\left(a+1\right)}\ge\dfrac{3}{4}\)
Cho a,b,c>0.Chứng minh rằng:
\(\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{abc}\)
Cho tam giác ABC có BC = a ; CA = b ; AB = c. Chứng minh rằng:
a) \(sin\dfrac{A}{2}\)≤\(\dfrac{a}{b+c}\)
b) \(\sin\dfrac{A}{2}.\sin\dfrac{B}{2}.\sin\dfrac{C}{2}\) ≤ \(\dfrac{1}{8}\)
Cho \(0\le a,b,c\le1\);ab+bc+ca=1.CMR:\(\dfrac{4a}{a+b}+\dfrac{3b}{b+c}+\dfrac{2c}{c+a}\le5\)